Skip to main content

Advertisement

Log in

Computational analysis and physico-chemical characterization of an inclusion compound between praziquantel and methyl-β-cyclodextrin for use as an alternative in the treatment of schistosomiasis

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Schistosomiasis is still an endemic disease in many regions, with 250 million people infected with Schistosoma and about 500,000 deaths per year. Praziquantel (PZQ) is the drug of choice for schistosomiasis treatment, however it is classified as Class II in the Biopharmaceutics Classification System, as its low solubility hinders its performance in biological systems. The use of cyclodextrins is a useful tool to increase the solubility and bioavailability of drugs. The aim of this work was to prepare an inclusion compound of PZQ and methyl-β-cyclodextrin (MeCD), perform its physico-chemical characterization, and explore its in vitro cytotoxicity. SEM showed a change of the morphological characteristics of PZQ:MeCD crystals, and IR data supported this finding, with changes after interaction with MeCD including effects on the C–H of the aromatic ring, observed at 758 cm−1. Differential scanning calorimetry measurements revealed that complexation occurred in a 1:1 molar ratio, as evidenced by the lack of a PZQ transition temperature after inclusion into the MeCD cavity. In solution, the PZQ UV spectrum profile in the presence of MeCD was comparable to the PZQ spectrum in a hydrophobic solvent. Phase solubility diagrams showed that there was a 5.5-fold increase in PZQ solubility, and were indicative of a type AL isotherm, that was used to determine an association constant (Ka) of 140.8 M−1. No cytotoxicity of the PZQ:MeCD inclusion compound was observed in tests using 3T3 cells. The results suggest that the association of PZQ with MeCD could be a good alternative for the treatment of schistosomiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cioli, D., Botros, S.S., Wheatcroft-Francklow, K., Mbaye, A., Southgate, V., Tchuente, L.A., Pica-Mattoccia, L., Troiani, A.R., El-Din, S.H., Sabra, A.N., Albin, J., Engels, D., Doenhoff, M.J.: Determination of ED50 values for praziquantel in praziquantel-resistant and -susceptible Schistosoma mansoni isolates. Int. J. Parasitol. 34, 979–987 (2004)

    Article  CAS  Google Scholar 

  2. Katz, N., Coelho, P.M.: Clinical therapy of schistosomiasis mansoni: the Brazilian contribution. Acta Trop. 108, 72–78 (2008)

    Article  CAS  Google Scholar 

  3. Doenhoff, M.J., Cioli, D., Utzinger, J.: Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr. Opin. Infect. Dis. 21, 659–667 (2008)

    Article  CAS  Google Scholar 

  4. Katz, N., Dias, E.P., Araujo, N., Souza, C.P.: A human strain of S. mansoni resistant to schistosomicidal agents [Estudo de uma cepa humana de Schistosoma mansoni resistente a agentes esquistossomicidas]. Rev. Soc. Bras. Med. Trop. 7, 381–387 (1973)

    Google Scholar 

  5. Hagan, P.: Schistosomiasis—a rich vein of research. Parasitology 136, 1611–1619 (2009)

    Article  Google Scholar 

  6. Lindenberg, M., Kopp, S., Dressman, J.B.: Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm. 58, 265–278 (2004)

    Article  Google Scholar 

  7. Andersson, K.L., Chung, R.T.: Hepatic schistosomiasis. Curr. Treat. Options Gastroenterol. 10, 504–512 (2007)

    Article  Google Scholar 

  8. Stella, V.J., He, Q.: Cyclodextrins. Toxicol. Pathol. 36, 30–42 (2008)

    Article  CAS  Google Scholar 

  9. Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J. Pharm. Sci. 85, 1142–1169 (1996)

    Article  CAS  Google Scholar 

  10. Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023–1035 (2004)

    Article  CAS  Google Scholar 

  11. Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  CAS  Google Scholar 

  12. www.roquette-pharma.com (2010). Accessed 8 March 2010

  13. Becket, G., Schep, L.J., Tan, M.Y.: Improvement of the in vitro dissolution of praziquantel by complexation with alpha-, beta- and gamma-cyclodextrins. Int. J. Pharm. 179, 65–71 (1999)

    Article  CAS  Google Scholar 

  14. de Jesus, M.B., Pinto, L.M.A., Fraceto, L.F., Takahata, Y., Lino, A.C., Jaime, C., de Paula, E.: Theoretical and experimental study of a praziquantel and beta-cyclodextrin inclusion complex using molecular mechanic calculations and H1-nuclear magnetic resonance. J. Pharm. Biomed. Anal. 41, 1428–1432 (2006)

    Article  Google Scholar 

  15. de Jesus, M.B., Pinto, L.M.A., Fraceto, L.F., Magalhaes, L.A., Zanotti-Magalhaes, E.M., de Paula, E.: Improvement of the oral praziquantel anthelmintic effect by cyclodextrin complexation. J. Drug Target. 18, 21–26 (2010)

    Article  Google Scholar 

  16. Chaves, I.S., Rodrigues, S.G., Melo, N.F.S., de Jesus, M.B., Fraceto, L.F., de Paula, E., Pinto, L.M.A.: Alternativas para o tratamento da esquistossomose: caracterização físico-química do complexo de inclusão entre praziquantel e hidroxipropil-β-ciclodextrina. Lat. Am. J. Pharm. 29, 1067–1074 (2010)

    Google Scholar 

  17. Lipkowitz, K.B.: Applications of computational chemistry to the study of cyclodextrins. Chem. Rev. 98, 1829–1874 (1998)

    Article  CAS  Google Scholar 

  18. Yan, C., Xiu, Z., Li, X., Hao, C.: Molecular modeling study of beta-cyclodextrin complexes with (+)-catechin and (−)-epicatechin. J. Mol. Graph. Model. 26, 420–428 (2007)

    Article  CAS  Google Scholar 

  19. Filippa, M., Sancho, M.I., Gasull, E.: Encapsulation of methyl and ethyl salicylates by beta-cyclodextrin HPLC, UV–vis and molecular modeling studies. J. Pharm. Biomed. Anal. 48, 969–973 (2008)

    Article  CAS  Google Scholar 

  20. SpartanPro 1.0.1: Wavefunction, Irvine, CA (2001)

  21. Chambers, C.C., Hawkins, G.D., Cramer, C.J., Truhlar, D.G.: Model for aqueous solvation based on class IV atomic charges and first solvation shell effects. J. Phys. Chem. 100, 16385–16398 (1996)

    Article  CAS  Google Scholar 

  22. Polyakov, N.E., Leshina, T.V., Konovalova, T.A., Hand, E.O., Kispert, L.D.: Inclusion complexes of carotenoids with cyclodextrins: 1H NMR, EPR, and optical studies. Free Radic. Biol. Med. 36, 872–880 (2004)

    Article  CAS  Google Scholar 

  23. Moraes, C.M., Abrami, P., de Paula, E., Braga, A.F., Fraceto, L.F.: Study of the interaction between S(−) bupivacaine and 2-hydroxypropyl-beta-cyclodextrin. Int. J. Pharm. 331, 99–106 (2007)

    Article  CAS  Google Scholar 

  24. Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–121 (1965)

    CAS  Google Scholar 

  25. Correa, D.H.A., Melo, P.S., de Carvalho, C.A.A., de Azevedo, M.B.M., Duran, N., Haun, M.: Dehydrocrotonin and its beta-cyclodextrin complex: cytotoxicity in V79 fibroblasts and rat cultured hepatocytes. Eur. J. Pharmacol. 510, 17–24 (2005)

    Article  CAS  Google Scholar 

  26. Riddell, R.J., Clothier, R.H., Balls, M.: An evaluation of three in vitro cytotoxicity assays. Food Chem. Toxicol. 24, 469–471 (1986)

    Article  CAS  Google Scholar 

  27. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65, 55–63 (1983)

    Article  CAS  Google Scholar 

  28. Pinto, L.M.A., de Jesus, M.B., de Paula, E., Lino, A.C.S., Alderete, J.B., Duarte, H.A., Takahata, Y.: Elucidation of inclusion compounds between β-cyclodextrin/local anesthetics structure: a theoretical and experimental study using differential scanning calorimetry and molecular mechanics. J. Mol. Struct. (Teochem) 678, 63–66 (2004)

    Article  CAS  Google Scholar 

  29. Liu, Y., Wang, X., Wang, J.K., Ching, C.B.: Structural characterization and enantioseparation of the chiral compound praziquantel. J. Pharm. Sci. 93, 3039–3046 (2004)

    Article  CAS  Google Scholar 

  30. Wang, H.Y., Han, J., Feng, X.G., Pang, Y.L.: Study of inclusion complex formation between tropaeolin OO and β-cyclodextrin spectrophotometry and infrared spectroscopy. Spectrochim. Acta Part A 65, 100–105 (2006)

    Article  Google Scholar 

  31. Haiyee, Z.A., Saim, N., Said, M., Illias, R.M., Mustapha, W.A.W., Hassan, O.: Characterization of cyclodextrin complexes with turmeric oleoresin. Food Chem. 465, 114–459 (2009)

    Google Scholar 

  32. Passerini, N., Albertini, B., Perissutti, B., Rodriguez, L.: Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel. Int. J. Pharm. 318, 92–102 (2006)

    Article  CAS  Google Scholar 

  33. Pinto, L.M.A., Fraceto, L.F., Santana, M.H.A., Pertinhez, T.A., Oyama Jr., S., de Paula, E.: Physico-chemical characterization of benzocaine-β-cyclodextrin inclusion complexes. J. Pharm. Biomed. Anal. 39, 956–963 (2005)

    Article  CAS  Google Scholar 

  34. Bekers, O., Uijtendaal, E.V., Beijnen, J.H., Bult, A., Underberg, J.M.: Cyclodextrins in the pharmaceutical field. Drug Dev. Ind. Pharm. 17, 1503–1549 (1991)

    Article  CAS  Google Scholar 

  35. Dodziuk, H.: Cyclodextrins and Their Complexes. Wiley–VCH, Weinheim (2006)

    Book  Google Scholar 

  36. Grillo, R., de Melo, N.F.S., Fraceto, L.F., Brito, C.L., Trossini, G.H.G., Menezes, C.M.S., Ferreira, E.I., Moraes, C.M.: Caracterização físico-química de complexo de inclusão entre hidroximetilnitrofurazona e hidroxipropil-β-ciclodextrina. Quím. Nova 31, 290–295 (2008)

    Article  CAS  Google Scholar 

  37. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  Google Scholar 

  38. Szejtli, J.: Cyclodextrin Technology. Kluwer, Dordrecht (1998)

    Google Scholar 

  39. Cabral Marques, H.M., Hadgraft, J., Kellaway, I.W.: Studies of cyclodextrin inclusion complexes. I. The salbutamol-cyclodextrin complex as studied by phase solubility and DSC. Int. J. Pharm. 63, 259–266 (1990)

    Article  CAS  Google Scholar 

  40. Schneider, H.J., Hacket, F., Rudiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1786 (1998)

    Article  CAS  Google Scholar 

  41. Thi, T.H.H., Azaroual, N., Flament, M.-P.: Characterization and in vitro evaluation of the formoterol/cyclodextrin complex for pulmonary administration by nebulization. Eur. J. Pharm. Biopharm. 72, 214–218 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CAPQ/UFLA (Central de Análises e Prospecção Química) for the provision of equipment and facilities and Antonio C. S. Lino for the suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana de Matos Alves Pinto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, S.G., Chaves, I.S., de Melo, N.F.S. et al. Computational analysis and physico-chemical characterization of an inclusion compound between praziquantel and methyl-β-cyclodextrin for use as an alternative in the treatment of schistosomiasis. J Incl Phenom Macrocycl Chem 70, 19–28 (2011). https://doi.org/10.1007/s10847-010-9852-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9852-y

Keywords

Navigation