Skip to main content
Log in

Structures of urea/thiourea 1,3-disubstituted thia[4]calixarenes and corresponding monofunctional receptors and their anion recognition properties

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Two thiacalix[4]arenes in 1,3-alternate conformation functionalized by two (CH2)2NH(C=X)NHC6H4-NO2-p groups (X = S,O) as well as two related monofunctional receptors MeO(CH2)2NH(C=X)NHC6H4-NO2-p were prepared and characterized by X-ray crystal structures. The thioureido and ureido derivatives have E,Z and E,E conformations respectively both in monofunctional receptors and thiacalixarenes. The thiacalixarene attached thiourea groups are well separated from each other, but respective urea groups are much closer to each other and have mutual parallel orientation making the bisurea derivative a better preorganized receptor as compared to bisthiourea. Binding of Cl, F, H2PO4 and AcO anions in chloroform and DMSO was studied by spectrophotometric and NMR titrations. In chloroform both bisurea and bisthiourea thiacalix[4]arenes bind anions 3–5 times stronger than corresponding monofunctional compounds in spite of better preorganization of the urea derivative. In DMSO simultaneous deprotonation of ureido NH groups of receptors and hydrogen bonding reactions are observed. Deprotonation by H2PO4 is accompanied by a strong association between liberated H3PO4 and H2PO4 (log K = 3.9). For hydrogen bonding associations the binding constants of H2PO4 and AcO with bisurea thiacalixarene are up to two orders of magnitude larger than those with corresponding monofunctional receptor, but with bisthiourea thiacalixarene the effect is less than two-fold. Thus in this solvent in contrast to chloroform the preorganization is an important factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gale, P.A., García-Garrido, S.E., Garric, J.: Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem. Soc. Rev. 37, 151–190 (2008). Reviews

    Article  CAS  Google Scholar 

  2. Bates, G.W., Gale, P.A.: An introduction to anion receptors based on organic frameworks. Struct. Bond 129, 1–44 (2008)

    Article  CAS  Google Scholar 

  3. Steed, J.W.: A modular approach to anion binding podands: adaptability in design and synthesis leads to adaptability in properties. Chem. Commun. 2637–2649 (2006)

  4. Amendola, V., Bonizzoni, M., Esteban-Gómez, D., Fabbrizzi, L., Licchelli, M., Sancenón, F., Taglietti, A.: Some guidelines for the design of anion receptors. Coord. Chem. Rev. 250, 1451–1470 (2006)

    Article  CAS  Google Scholar 

  5. Kang, S.O., Begum, R.A., Bowman-James, K.: Amide-based ligands for anion coordination. Angew. Chem. Int. Ed. 45, 7882–7894 (2006)

    Article  CAS  Google Scholar 

  6. Sessler, J.L., Gale, P.A., Cho, W.-S.: Anion Receptor Chemistry. Royal Society of Chemistry, Cambridge, UK (2006)

    Google Scholar 

  7. Leung, A.N., Degenhardt, D.A., Bühlmann, P.: Effect of spacer geometry on oxoanion binding by bis- and tetrakis-thiourea hosts. Tetrahedron 64, 2530–2536 (2008)

    Article  CAS  Google Scholar 

  8. Lowe, A.J., Dyson, G.A., Pfeffer, F.M.: Steric and electronic factors influencing recognition by a simple, charge neutral norbornene based anion receptor. Org. Biomol. Chem. 5, 1343–1346 (2007)

    Article  CAS  Google Scholar 

  9. Rashdan, S., Light, M.E., Kilburn, J.D.: Pyridyl thioureas as switchable anion receptors. Chem. Commun. 4578–4580 (2006)

  10. Snellink-Ruël, B.H.M., Antonisse, M.M.G., Engbersen, J.F.J., Timmerman, P., Reinhoudt, D.N.: Neutral anion receptors with multiple urea-binding sites. Eur. J. Org. Chem. 165–170 (2000)

  11. Turner, D.R., Paterson, M.J., Steed, J.W.: A conformationally flexible, urea-based tripodal anion receptor: solid-state, solution, and theoretical studies. J. Org. Chem. 71, 1598–1608 (2006)

    Article  CAS  Google Scholar 

  12. Scheerder, J., Fochi, M., Engbersen, J.F.J., Reinhoudt, D.N.: Urea-derivatized p-tert-butylcalix[4]arenes: neutral ligands for selective anion complexation. J. Org. Chem. 59, 7815–7820 (1994)

    Article  CAS  Google Scholar 

  13. Lhoták, P.: Anion receptors based on calixarenes. Top. Curr. Chem. 255, 65 (2005)

    Google Scholar 

  14. Schazmann, B., Alhashimy, N., Diamond, D.J.: Chloride selective calix[4]arene optical sensor combining urea functionality with pyrene excimer transduction. Am. Chem. Soc. 128, 8607–8614 (2006)

    Article  CAS  Google Scholar 

  15. Nabeshima, T., Saiki, T., Iwabuchi, J., Akine, S.J.: Stepwise and dramatic enhancement of anion recognition with a triple-site receptor based on the calix[4]arene framework using two different cationic effectors. Am. Chem. Soc. 127, 5507–5511 (2005)

    Article  CAS  Google Scholar 

  16. Yakovenko, A.V., Boyko, V.I., Kalchenko, V.I., Baldini, L., Casnati, A., Sansone, F., Ungaro, R.J.: N-linked peptidocalix[4]arene bisureas as enantioselective receptors for amino acid derivatives. Org. Chem. 72, 3223–3231 (2007)

    Article  CAS  Google Scholar 

  17. Curinova, P., Stibor, I., Budka, J., Sykora, J., Lang, K., Lhotak, P.: Anion recognition by diureido-calix[4]arenes in the 1,3-alternate conformation. New J. Chem. 33, 612–619 (2009)

    Article  CAS  Google Scholar 

  18. Sasaki, S., Mizuno, M., Naemura, K., Tobe, Y.J.: Synthesis and anion-selective complexation of cyclophane-based cyclic thioureas. Org. Chem. 65, 275–283 (2000)

    Article  CAS  Google Scholar 

  19. Okumura, Y., Murakami, S., Maeda, H., Matsumura, N., Mizuno, K.: Synthesis and dual binding character of novel macrocyclic thiourea derivatives. Tetrahedron Lett. 44, 8183–8185 (2003)

    Article  CAS  Google Scholar 

  20. Roussel, C., Roman, M., Andreoli, F., Del Rio, A., Faure, R., Vanthuyne, N.: Non-racemic atropisomeric (thio)ureas as neutral enantioselective anion receptors for amino-acid derivatives: origin of smaller Kass with thiourea than urea derivatives. Chirality 18, 762–771 (2006)

    Article  CAS  Google Scholar 

  21. Lhoták, P., Svoboda, J., Stibor, I.: Anion receptors based on ureido-thiacalix[4]arenes. Tetrahedron 62, 1253–1257 (2006)

    Article  Google Scholar 

  22. Zlatušková, P., Stibor, I., Tkadlecová, M., Lhoták, P.: Novel anion receptors based on thiacalix[4]arene derivatives. Tetrahedron 60, 11383–11390 (2004)

    Article  Google Scholar 

  23. Kroupa, J., Stibor, I., Pojarova, M., Tkadlecova, M., Lhotak, P.: Anion receptors based on ureido-substituted thiacalix[4]arenes and calix[4]arenes. Tetrahedron 64, 10075–10079 (2008)

    Article  CAS  Google Scholar 

  24. Morohashi, N., Narumi, F., Iki, N., Hattori, T., Miyano, S.: Thiacalixarenes. Chem. Rev. 106, 5291–5316 (2006)

    Article  CAS  Google Scholar 

  25. Lhotak, P.: Chemistry of thiacalixarenes. Eur. J. Org. Chem. 1675–1692 (2004)

  26. Iki, N.: Non-covalent strategy for activating separation and detection functionality by use of the multifunctional host molecule thiacalixarene. J. Incl. Phenom. Macrocycl. Chem. 64, 1–13 (2009)

    Article  CAS  Google Scholar 

  27. Yamato, T., Perez-Casas, C., Elsegood, M.R.J., Dale, S.H., Redshaw, C.: Synthesis and inclusion properties of a novel thiacalix[4]arene-based hard-soft receptor with 1,3-alternate conformation. J. Incl. Phenom. Macrocycl. Chem. 55, 31–36 (2006)

    Article  CAS  Google Scholar 

  28. Liu, L., Huang, K., Yan, C.G.: Syntheses, reactions and crystal structures of 1,3-alternate p-tert-butylthiacalix[4]arene esters and amides. J. Incl. Phenom. Macrocycl. Chem. (2009) doi:10.1007/s10847-009-9652-4

  29. Schneider, H.-J., Yatsimirsky, A.K.: Selectivity in supramolecular host–guest complexes. Chem. Soc. Rev. 37, 263–277 (2008)

    Article  CAS  Google Scholar 

  30. Kumagi, H., Hasegawa, M., Miyanari, S., Sugawa, Y., Sato, Y., Hori, T., Udea, S., Kamiyama, H., Miyano, S.: Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Lett. 38, 3971–3972 (1997)

    Article  Google Scholar 

  31. Pérez-Casas, C., Yamamoto, H., Yamato, T.: Regioselective synthesis of distal-bisalkoxytetrathiacalix[4]arenes by a protection-deprotection method using benzyl groups. J. Chem. Res. 694–696 (2005)

  32. Pescatori, L., Arduini, A., Pochini, A., Ugozzoli, F., Secchi, A.: Design, synthesis and recognition properties of urea-type anion receptors in low polar media. Eur. J. Org. Chem. 109–120 (2008)

  33. Hamon, M., Ménand, M., Le Gac, S., Luhmer, M., Dalla, V., Jabin, I.J.: Calix[6]tris(thio)ureas: heteroditopic receptors for the cooperative binding of organic ion pairs. Org. Chem. 73, 7067–7071 (2008)

    Article  CAS  Google Scholar 

  34. Pérez-Casas, C., Yatsimirsky, A.K.: Detailing hydrogen bonding and deprotonation equilibria between anions and urea/thiourea derivatives. J. Org. Chem. 73, 2275–2284 (2008)

    Article  Google Scholar 

  35. Amendola, V., Esteban-Gómez, D., Fabbrizzi, L., Licchelli, M.: What anions do to N-H-containing receptors. Acc. Chem. Res. 39, 343–353 (2006)

    Article  CAS  Google Scholar 

  36. Boiocchi, M., Del Boca, L., Esteban-Gómez, D., Fabbrizzi, L., Licchelli, M., Monzani, E.: Nature of urea-fluoride interaction: incipient and definitive proton transfer. J. Am. Chem. Soc. 126, 16507–16514 (2004)

    Article  CAS  Google Scholar 

  37. Boiocchi, M., Del Boca, L., Esteban-Gómez, D., Fabbrizzi, L., Licchelli, M., Monzani, E.: Anion-induced urea deprotonation. Chem. Eur. J. 11, 3097–3104 (2005)

    Article  CAS  Google Scholar 

  38. Esteban-Gómez, D., Fabbrizzi, L., Licchelli, M.: Why, on interaction of urea-based receptors with fluoride, beautiful colors develop. J. Org. Chem. 70, 5717–5720 (2005)

    Article  Google Scholar 

  39. Bordwell, F.G.: Equilibrium acidities in dimethyl sulfoxide solution. Acc. Chem. Res. 21, 456–463 (1988)

    Article  CAS  Google Scholar 

  40. Elmore, K.L., Hartfield, J.D., Dunn, R.L., Jones, A.D.: Dissociation of phosphoric acid solutions at 25. J. Phys. Chem. 69, 3520–3525 (1965)

    Article  CAS  Google Scholar 

  41. Braga, D., Curzi, M., Maini, L., Polito, M., Grepioni, F.: Crystal synthesis of hybrid organometallic-inorganic hydrogen bonded salts of acid oxoanions. Dalton Trans. 2432–2437 (2004)

  42. Formica, M., Fusi, V., Macedi, E., Paoli, P., Piersanti, G., Rossi, P., Zappiac, G., Orlando, P.: New branched macrocyclic ligand and its side-arm, two urea-based receptors for anions: synthesis, binding studies and crystal structure. New J. Chem. 32, 1204–1214 (2008)

    Article  CAS  Google Scholar 

  43. Bruker Analytical X-ray Systems, SMART: Bruker Molecular Analysis Research Tool, Versions 5.057 and 5.618, (1997) and (2000)

  44. Bruker Analytical X-ray Systems, SAINT + NT, Versions 6.01 and 6.04, (1999) and (2001)

  45. Sheldrick, G.M.: SHELX-86, Program for Crystal Structure Solution. University of Göttingen, Germany (1986)

    Google Scholar 

  46. Bruker Analytical X-ray Systems, SHELXTL-NT Versions 5.10 and 6.10, (1999) and (2000)

Download references

Acknowledgments

Carol Pérez-Casas thanks DGAPA UNAM and CONACyT for the postdoctoral fellowships and Anatoly Yatsimirsky thanks DGAPA UNAM for Sabbatical fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly K. Yatsimirsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Casas, C., Höpfl, H. & Yatsimirsky, A.K. Structures of urea/thiourea 1,3-disubstituted thia[4]calixarenes and corresponding monofunctional receptors and their anion recognition properties. J Incl Phenom Macrocycl Chem 68, 387–398 (2010). https://doi.org/10.1007/s10847-010-9798-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9798-0

Keywords

Navigation