Skip to main content

Advertisement

Log in

Host–guest complexes of the antituberculosis drugs pyrazinamide and isoniazid with cucurbit[7]uril

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The potential use of cucurbit[7]uril (CB[7]) as an excipient in oral formulations for improved drug physical stability or for improved drug delivery was examined with the antituberculosis drugs pyrazinamide (pyrazine-2-carboxamide) and isoniazid (isonicotinohydrazide). Both drugs form 1:1 host–guest complexes with CB[7] as determined by 1H nuclear magnetic resonance spectrometry, electrospray ionisation mass spectrometry and molecular modelling. Drug binding is stabilised by hydrophobic effects between the pyridine and pyrazine rings of isoniazid and pyrazinamide, respectively, to the inside cavity of the CB[7] macrocycle as well as hydrogen bonds between the hydrazide and amide groups of each drug to the CB[7] carbonyl portals. At pH 1.5, isoniazid binds CB[7] with a binding constant of 5.6 × 105 M−1, whilst pyrazinamide binds CB[7] at pH 7 with a much smaller binding constant (4.8 × 103 M−1). Finally, CB[7] prevents drug melting through encapsulation. Where previously pyrazinamide displays a typical melting point of 189 °C and isoniazid 171 °C, by differential scanning calorimetry, no melting or degradation at temperatures up to 280 °C is observed for either drug once bound by CB[7].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cole, S.T., Eisenach, K.D., McMurray, D.N., Jacobs, W.R. Jr. (eds.): Tuberculosis and the tubercle bacillus. ASM Press, Washington (2005)

  2. American thoracic society/Centers for disease control and prevention/Infectious diseases society of America: treatment of tuberculosis. Am. J. Respir. Crit. Care Med. 167, 603–662 (2003)

    Google Scholar 

  3. Mugnaini, C., Pasquini, S., Corelli, F.: The 4-quinolone-3-carboxylic acid motif as a multivalent scaffold in medicinal chemistry. Curr. Med. Chem. 16, 1746–1767 (2009)

    Article  CAS  Google Scholar 

  4. Manetti, F., Magnani, M., Castagnolo, D., Passalacqua, L., Botta, M., Corelli, F., Saddi, M., Deidda, D., De Logu, A.: Ligand-based virtual screening, parallel solution-phase and microwave-assisted synthesis as tools to identify and synthesize new inhibitors of Mycobacterium tuberculosis. ChemMedChem 1, 973–989 (2006)

    Article  CAS  Google Scholar 

  5. Chhabria, M., Jani, M.H.: Design, synthesis and antimycobacterial activity of some novel imidazo[1, 2-c]pyrimidines. Eur. J. Med. Chem. 44, 3837–3844 (2009)

    Article  CAS  Google Scholar 

  6. Chhabria, M., Jani, M., Patel, S.: New frontiers in the therapy of tuberculosis: fighting with the global menace. Mini. Rev. Med. Chem. 9, 401–430 (2009)

    Article  CAS  Google Scholar 

  7. Rogoza, L.N., Salakhutdinov, N.F., Tolstikov, G.A.: Natural and synthetic compounds with an antimycobacterial activity. Mini. Rev. Org. Chem. 6, 135–151 (2009)

    Article  CAS  Google Scholar 

  8. Mendez, M.P., Landon, M.E., McCloud, M.K., Davidson, P., Christensen, P.J.: Co-infection with pansensitive and multidrug-resistant strains of Mycobacterium tuberculosis. Emerg. Infect. Dis. 15, 578–580 (2009)

    Article  CAS  Google Scholar 

  9. Mathema, B., Kurepina, N.E., Bifani, P.J., Kreiswirth, B.N.: Molecular epidemiology of tuberculosis: current insights. Clin. Microbiol. Rev. 19, 658–685 (2006)

    Article  CAS  Google Scholar 

  10. Isaacs, L.: Cucurbit[n]urils: from mechanism to structure and function. Chem. Commun. 619–629 (2009)

  11. Kim, K., Selvapalam, N., Ko, Y.H., Park, K.M., Kim, D., Kim, J.: Functionalized cucurbiturils and their applications. Chem. Soc. Rev. 36, 267–279 (2007)

    Article  CAS  Google Scholar 

  12. Uzunova, V.D., Cullinane, C., Brix, K., Nau, W.M., Day, A.I.: Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study. Org. Biomol. Chem. 8, 2037–2042 (2010)

    Article  CAS  Google Scholar 

  13. Walker, S., Kaur, R., McInnes, F.J., Wheate, N.J.: Oral drug formulations. Great Britian Patent Application No. 0906003.9, April 2009, 24 pp

  14. McInnes, F.J., Anthony, N.G., Kennedy, A.R., Wheate, N.J.: Solid state stabilisation of the orally delivered drugs atenolol, glibenclamide, memantine and paracetamol through their complexation with cucurbit[7]uril. Org. Biomol. Chem. 8, 765–773 (2010)

    Article  CAS  Google Scholar 

  15. Kennedy, A.R., Florence, A.F., McInnes, F.J., Wheate, N.J.: A chemical preformulation study of a host-guest complex of cucurbit[7]uril and a multinuclear platinum agent for enhanced anticancer drug delivery. Dalton Trans. 7695–7700 (2009)

  16. Wheate, N.J.: Improving platinum(II)-based anticancer drug delivery using cucurbit[n]urils. J. Inorg. Biochem. 102, 2060–2066 (2008)

    Article  CAS  Google Scholar 

  17. Wheate, N.J., Taleb, R.I., Krause-Heuer, A.M., Cook, R.L., Wang, S., Higgins, V.J., Aldrich-Wright, J.R.: Novel platinum(II)-based anticancer complexes and molecular hosts as their drug delivery vehicles. Dalton Trans. 5055–5064 (2007)

  18. Kemp, S., Wheate, N.J., Wang, S., Collins, J.G., Ralph, S.F., Day, A.I., Higgins, V.J., Aldrich-Wright, J.R.: Encapsulation of platinum(II)-based DNA intercalators within cucurbit[6, 7, 8]urils. J. Biol. Inorg. Chem. 12, 969–979 (2007)

    Article  CAS  Google Scholar 

  19. Kemp, S., Wheate, N.J., Stootman, F.H., Aldrich-Wright, J.R.: The host-guest chemistry of proflavine with cucurbit[6, 7, 8]urils. Supramol. Chem. 19, 475–484 (2007)

    Article  CAS  Google Scholar 

  20. Wheate, N.J., Buck, D.P., Day, A.I., Collins, J.G.: Cucurbit[n]uril binding of platinum anticancer complexes. Dalton Trans. 451–458 (2006)

  21. Wheate, N.J., Day, A.I., Blanch, R.J., Arnold, A.P., Cullinane, C., Collins, J.G.: Multi-nuclear platinum complexes encapsulated in cucurbit[n]uril as an approach to reduce toxicity in cancer treatment. Chem. Commun. 1424–1425 (2004)

  22. Zhao, Y., Bali, M.S., Cullinane, C., Day, A.I., Collins, J.G.: Synthesis, cytotoxicity and cucurbituril binding of triamine linked dinuclear platinum complexes. Dalton Trans. 5190–5198 (2009)

  23. Buck, D.P., Abeysinghe, P.M., Cullinane, C., Day, A.I., Collins, J.G., Harding, M.M.: Inclusion complexes of the antitumour metallocenes Cp2MCl2 (M = Mo, Ti) with cucurbit[n]urils. Dalton Trans. 2328–2334 (2008)

  24. Bali, M.S., Buck, D.P., Coe, A.J., Day, A.I., Collins, J.G.: Cucurbituril binding of trans-[{PtCl(NH3)2}2(μ-NH2(CH2)8NH2)]2+ and the effect on the reaction with cysteine. Dalton Trans. 5337–5344 (2006)

  25. Wang, R., Bardelang, D., Waite, M., Udachin, K.A., Leek, D.M., Yu, K., Ratcliffe, C.I., Ripmesster, J.A.: Inclusion complexes of coumarin in cucurbiturils. Org. Biomol. Chem. 7, 2435–2439 (2009)

    Article  CAS  Google Scholar 

  26. Jeon, Y.J., Kim, S.-Y., Ko, Y.H., Sakamoto, S., Yamaguchi, K., Kim, K.: Novel molecular drug carrier: Encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug. Org. Biomol. Chem. 3, 2122–2125 (2005)

    Article  CAS  Google Scholar 

  27. Choi, J., Kim, J., Kim, K., Yang, S.-T., Kim, J.-I., Jon, S.: A rationally designed macrocyclic cavitand that kills bacteria with high efficacy and good selectivity. Chem. Commun. 1151–1153 (2007)

  28. Saleh, N.I., Koner, A.L., Nau, W.M.: Activation and stabilization of drugs by supramolecular pKa shifts: drug-delivery applications tailored for cucurbiturils. Angew. Chem. Int. Ed. 47, 5398–5401 (2008)

    Google Scholar 

  29. Lim, Y.-b., Kim, T., Lee, J.W., Kim, S.-M., Kim, H.-J., Kim, K., Park, J.-S.: Self-assembled ternary complex of cationic dendrimer, cucurbituril, and DNA: noncovalent strategy in developing a gene delivery carrier. Bioconjug. Chem. 13, 1181–1185 (2002)

    Article  CAS  Google Scholar 

  30. Wang, R., Wyman, I.W., Wang, S., Macartney, D.H.: Encapsulation of a b-carboline in cucurbit[7]uril. J. Incl. Phenom. Macrocycl. Chem. 64, 233–237 (2009)

    Article  CAS  Google Scholar 

  31. Park, K.M., Suh, K., Jung, H., Lee, D.-W., Ahn, Y., Kim, J., Baek, K., Kim, K.: Cucurbituril-based nanoparticles: a new efficient vehicle for targeted intracellular delivery of hydrophobic drugs. Chem. Commun. 71–73 (2009)

  32. Angelos, S., Yang, Y.-W., Patel, K., Stoddart, J.F., Zink, J.I.: pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. Angew. Chem. Int. Ed. 47, 2222–2226 (2008)

    Article  CAS  Google Scholar 

  33. Wang, R., Macartney, D.H.: Cucurbit[7]uril host-guest complexes of the histamine H2-receptor antagonist ranitine. Org. Biomol. Chem. 6, 1955–1960 (2008)

    Article  CAS  Google Scholar 

  34. Lee, H.K., Park, K.M., Jeon, Y.J., Kim, D., Oh, D.H., Kim, H.S., Park, C.K., Kim, K.: Vesicle formed by amphiphilc cucurbit[6]uril: versatile, noncovalent modification of the vesicle surface, and multivalent binding of sugar-decorated vesicles to lectin. J. Am. Chem. Soc. 127, 5006–5007 (2005)

    Article  CAS  Google Scholar 

  35. Kim, J., Ahn, Y., Park, K.M., Kim, Y., Ko, Y.H., Oh, D.H., Kim, K.: Carbohydrate wheels: cucurbituril-based carbohydrate clusters. Angew. Chem. Int. Ed. 46, 7393–7395 (2007)

    Article  CAS  Google Scholar 

  36. Zhao, Y., Buck, D.P., Morris, D.L., Pourgholami, M.H., Day, A.I., Collins, J.G.: Solubilisation and cytotoxicity of albendazole encapsulated in cucurbit[n]uril. Org. Biomol. Chem. 6, 4509–4515 (2008)

    Article  CAS  Google Scholar 

  37. Huang, X., Tan, Y., Zhou, Q., Wang, Y.: Fabrication of cucurbit[6]uril mediated alginate physical hydrogel beads and their application as drug carriers. e-polymers 95, 1–11 (2008)

    Google Scholar 

  38. Angelos, S., Khashab, N.M., Yang, Y.-W., Trabolsi, A., Khatib, H.A., Stoddart, J.F., Zink, J.I.: pH clock-operated mechanized nanoparticles. J. Am. Chem. Soc. 131, 12912–12914 (2009)

    Article  CAS  Google Scholar 

  39. Kim, B.S., Ko, Y.H., Kim, Y., Lee, H.J., Selvapalam, N., Lee, H.C., Kim, K.: Water soluble cucurbit[6]uril derivative as a potential Xe carrier for 129Xe NMR-based biosensors. Chem. Commun. 2756–2758 (2008)

  40. Rekharsky, M.V., Yamamura, H., Ko, Y.H., Selvapalam, N., Kim, K., Inoue, Y.: Sequence recognition and self-sorting of a dipeptide by cucurbit[6]uril and cucurbit[7]uril. Chem. Commun. 2236–2238 (2008)

  41. Rankin, M.A., Wagner, B.D.: Fluorescence enhancement of curcumin upon inclusion into cucurbituril. Supramol. Chem. 16, 513–519 (2004)

    Article  CAS  Google Scholar 

  42. Li, C., Li, J., Jia, X.: Selective binding and highly sensitive fluorescent sensor of palmatine and dehydrocorydaline alkaloids by cucurbit[7]uril. Org. Biomol. Chem. 7, 2699–2703 (2009)

    Article  CAS  Google Scholar 

  43. Wang, R., Yuan, L., Macartney, D. H.: A green to blue fluorescence switch of protonated 2-aminoanthracene upon inclusion in cucurbit[7]uril. Chem. Commun. 5867–5869 (2005)

  44. Bailey, D.M., Hennig, A., Uzunova, V.D., Nau, W.M.: Supramolecular tandem enzyme assays for multiparameter sensor arrays and enantiomeric excess determination of amino acids. Chem.—Eur J. 14, 6069–6077 (2008)

    Article  CAS  Google Scholar 

  45. Hennig, A., Bakirci, H., Nau, W.M.: Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes. Nat. Methods 4, 629–632 (2007)

    Article  CAS  Google Scholar 

  46. Nau, W.M., Ghale, G., Hennig, A., Bakirci, H., Bailey, D.M.: Substrate-selective supramolecular tandem assays: monitoring enzyme inhibition of arginase and diamine oxidase by fluorescent dye displacement from calixarene and cucurbituril macrocycles. J. Am. Chem. Soc. 131, 11558–11570 (2009)

    Article  CAS  Google Scholar 

  47. Huo, F.-J., Yin, C.-X., Yang, P.: The crystal structure, self-assembly, DNA-binding and cleavage studies of the [2]pseudorotaxane composed of cucurbit[6]uril. Bioorg. Med. Chem. Lett. 17, 932–936 (2007)

    Article  CAS  Google Scholar 

  48. Isobe, H., Sato, S., Lee, J.W., Kim, H.-J., Kim, K., Nakamura, E.: Supramolecular modulation of action of polyamine on enzyme/DNA interactions. Chem. Commun. 1549–1551 (2005)

  49. Ke, C.-F., Zhhang, H.-Y., Liu, Y., Feng, X.-Z.: Controllable DNA condensation through cucurbit[6]uril in 2D pseudopolyrotaxanes. Chem. Commun. 3374–3376 (2007)

  50. Wang, R., MacGillivray, B.C., Macartney, D. H.: Stabilization of the base-off forms of vitamin B12 and coenzyme B12 by encapsulation of the a-axial 5,6-dimethylbenzimidazole ligand with cucurbit[7]uril. Dalton Trans. 3584–3589 (2009)

  51. Hennig, A., Ghale, G., Nau, W.M.: Effects of cucurbit[7]uril on enzymatic activity. Chem. Commun. 1614–1616 (2007)

  52. Montes-Navajas, P., Gonzalez-Bejar, M., Scaiano, J.C., Garcia, H.: Cucurbituril complexes cross the cell membrane. Photochem. Photobiol. Sci. 8, 1743–1747 (2009)

    Article  CAS  Google Scholar 

  53. Kim, S.K., Park, K.M., Singha, K., Kim, J., Ahn, Y., Kim, K., Kim, W.J.: Galatosylated cucurbituril-inclusion polyplex for hepatocyte-targeted gene delivery. Chem. Commun. 46, 692–694 (2010)

    Article  CAS  Google Scholar 

  54. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The Cucurbit[n]uril Family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)

    Article  CAS  Google Scholar 

  55. Bartulewicz, D., Bielawski, K., Bielawska, A.: Arch. Pharm. Pharm. Med. Chem. 9, 422–426 (2002)

    Article  Google Scholar 

  56. Lee, M., Rhodes, A.L., Wyatt, M.D., D’Incalci, M., Forrow, S., Hartley, J.A.: In vitro cytotoxicity ofGC sequence directed alkylating agents related to distamycin. J. Med. Chem. 36, 863–870 (1993)

    Article  CAS  Google Scholar 

  57. Becker, C., Dressman, J.B., Amidon, G.L., Junginger, H.E., Kopp, S., Midha, K.K., Shah, V.P., Stavchansky, S., Barends, D.M.: Biowaiver monographs for immediate release solid oral dosage forms: isoniazid. J. Pharm. Sci. 96, 522–531 (2007)

    Article  CAS  Google Scholar 

  58. Becker, C., Dressman, J.B., Amidon, G.L., Junginger, H.E., Kopp, S., Midha, K.K., Shah, V.P., Stavchansky, S., Barends, D.M.: Biowaiver monographs for immediate release solid oral dosage forms: pyrazinamide. J. Pharm. Sci. 97, 3709–3720 (2008)

    Article  CAS  Google Scholar 

  59. Zhou, Y., Yu, H., Zhang, L., Xu, H., Wu, L., Sun, J., Wang, L.: A new spectrofluorometric method for the determination of nicotine base on the inclusion interaction of methylene blue and cucurbit[7]uril. Microchim. Acta 164, 63–68 (2009)

    Article  CAS  Google Scholar 

  60. Takaki, Y., Sasada, Y., Watanabe, T.: The crystal structure of α-pyrazinamide. Acta Cryst. 13, 693–702 (1960)

    Article  CAS  Google Scholar 

  61. Rø, G., Sørum, H.: The crystal and molecular structure of δ-pyrazincarboxamide. Acta Cryst. B28, 1677–1684 (1972)

    Google Scholar 

  62. Tamura, C., Kuwano, H.: Crystallographic data of carboxylic acids and carboxyamides of picoline and pyrazine derivatives. Acta Cryst. 14, 693 (1961)

    Article  CAS  Google Scholar 

  63. Jensen, L.H.: The crystal structure of isonicotinic acid hydrazide. J. Am. Chem. Soc. 76, 4663–4667 (1954)

    Article  CAS  Google Scholar 

  64. Bhat, T.N., Singh, T.P., Vijayan, M.: Isonicotinic acid hydrazide—a reinvestigation. Acta Cryst. B30, 2921–2922 (1974)

    CAS  Google Scholar 

  65. Rastogi, R., Sultana, Y., Aqil, M., Kumar, S., Chuttani, K., Mishra, A.K.: Alginate microspheres of isoniazid for oral sustained drug delivery. Int. J. Pharm. 334, 71–77 (2007)

    Article  CAS  Google Scholar 

  66. Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: Syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000)

    Article  CAS  Google Scholar 

  67. Bhutani, H., Singh, S., Jindal, K.C.: Drug-drug interaction studies on first-line anti-tuberculosis drugs. Pharm. Dev. Technol. 10, 517–524 (2005)

    Article  CAS  Google Scholar 

  68. Brittain, H.G.: Polymorphism in Pharmaceutical Solids. Marcel Dekker Inc., New York (1999)

    Google Scholar 

  69. Day, A., Arnold, A.P., Blanch, R.J., Snushall, B.: Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 66, 8094–8100 (2001)

    Article  CAS  Google Scholar 

  70. Maple, J.R., Hwang, M.J., Stockfisch, T.P., Dinur, U., Waldman, M., Ewig, C.S., Hagler, A.T.: Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules. J. Comput. Chem. 15, 162–182 (1994)

    Article  CAS  Google Scholar 

  71. Chen, J., Brooks, C.L., Khandogin, J.: Recent advances in implicit solvent-based methods for biomolecular simulations. Curr. Opin. Struct. Biol. 18, 140–148 (2008)

    CAS  Google Scholar 

  72. de Oliveira, A.M., Custodio, F.B., Donnici, C.L., Montanari, C.A.: Eur. J. Med. Chem. 38, 141–155 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nial J. Wheate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheate, N.J., Vora, V., Anthony, N.G. et al. Host–guest complexes of the antituberculosis drugs pyrazinamide and isoniazid with cucurbit[7]uril. J Incl Phenom Macrocycl Chem 68, 359–367 (2010). https://doi.org/10.1007/s10847-010-9795-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9795-3

Keywords

Navigation