Skip to main content
Log in

NMR as a tool for simultaneous study of diastereoisomeric inclusion complexes formed by racemic mixture of 4′-hydroxyflavanone and heptakis-(2,6-O-dimethyl)-β-cyclodextrin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The complexes formed by (±)-4′-hydroxyflavanone (OHFL) and heptakis-(2,6-O-dimethyl)-β-cyclodextrin (DM-β-CD) were obtained using the racemic mixture of OHFL. These complexes were able to be studied due to their enantiodifferentiation by 1H-NMR spectroscopy. Stoichiometry, association constants and thermodynamic parameters were obtained from these NMR data, and inclusion geometries were proposed from ROESY and docking experiments. The results show that diastereoisomeric complexes can be studied even when they are formed by enantiomeric mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Uekama, F., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  2. Breslow, R., Dong, S.D.: Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2011 (1998)

    Article  CAS  Google Scholar 

  3. Breslow, R.: Biomimetic chemistry and artificial enzymes: catalysis by design. Acc. Chem. Res. 28, 146–153 (1995)

    Article  CAS  Google Scholar 

  4. Bjerre, J., Rousseau, C., Marinescu, L., Bols, M.: Artificial enzymes, “Chemzymes”: current state and perspectives. Appl. Microbiol. Biotechnol. 81, 1–11 (2008)

    Article  CAS  Google Scholar 

  5. Takahashi, K.: Organic reactions mediated by cyclodextrins. Chem. Rev. 98, 2013–2033 (1998)

    Article  CAS  Google Scholar 

  6. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)

    Article  CAS  Google Scholar 

  7. Casy, A.F., Mercer, A.D.: Application of cyclodextrins to chiral analysis by 1H-NMR spectroscopy. Magn. Reson. Chem. 26, 765–774 (1988)

    Article  CAS  Google Scholar 

  8. Casy, A.F.: Chiral discrimination by NMR spectroscopy. Trac-Trend. Anal. Chem. 12, 185–189 (1993)

    Article  CAS  Google Scholar 

  9. McCarroll, M.E., Billiot, F.H., Warner, I.M.: Fluorescence anisotropy as a measure of chiral recognition. J. Am. Chem. Soc. 123, 3173–3174 (2001)

    Article  CAS  Google Scholar 

  10. Xu, Y., McCarroll, M.E.: Determination of enantiomeric composition by fluorescence anisotropy. J. Phys. Chem. A 108, 6929–6932 (2004)

    Article  CAS  Google Scholar 

  11. Xu, Y., McCarroll, M.E.: Fluorescence anisotropy as a method to examine the thermodynamics of enantioselectivity. J. Phys. Chem. B 109, 8144–8152 (2005)

    Article  CAS  Google Scholar 

  12. Gübitz, G., Schmid, M.G.: Chiral separation by chromatographic and electromigration techniques. A review. Biopharm. Drug Dispos. 22, 291–336 (2001)

    Article  Google Scholar 

  13. Schneider, H.J., Hacket, F., Rüdiger, V.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998)

    Article  CAS  Google Scholar 

  14. Hult, M., Shafqat, N., Elleby, B., Mitschke, D., Svensson, S., Forsgren, M., Barf, T., Vallgårda, J., Abrahmsen, L., Oppermann, U.: Active site variability of type 1 11β-hydroxysteroid dehydrogenase revealed by selective inhibitors and cross-species comparisons. Mol. Cell. Endocrinol. 248, 26–33 (2006)

    Article  CAS  Google Scholar 

  15. Schweizer, R.A.S., Atanasov, A.G., Frey, B.M., Odermatt, A.: A rapid screening assay for inhibitors of 11β-hydroxysteroid dehydrogenases (11β-HSD): flavanone selectively inhibits 11β-HSD1 reductase activity. Mol. Cell. Endocrinol. 212, 41–49 (2003)

    Article  CAS  Google Scholar 

  16. Tárkányi, G.: Quantitative approach for the screening of cyclodextrins by nuclear magnetic resonance spectroscopy in support of chiral separations in liquid chromatography and capillary electrophoresis Enantioseparation of norgestrel with α-, β- and γ-cyclodextrins. J. Chromatogr. A 961, 257–276 (2002)

    Article  Google Scholar 

  17. Muñoz de la Peña, A., Ndou, T.T., Zung, J.B., Greene, K.L., Live, D.H., Warner, I.M.: Alcohol size as a factor in the ternary complexes formed with pyrene and β-cyclodextrin. J. Am. Chem. Soc. 113, 1572–1577 (1991)

    Article  Google Scholar 

  18. Shehatta, I.: Cyclodextrins as enhancers of the aqueous solubility of the anthelmintic drug mebendazole: thermodynamic considerations. Monatsh. Chem. 133, 1239–1247 (2002)

    Article  CAS  Google Scholar 

  19. Salvatierra, D., Díez, C., Jaime, C.: Host/guest interactions and NMR spectroscopy. A computer program for association constant determination. J. Inclus. Phenom. Mol. 27, 215–231 (1997)

    Article  CAS  Google Scholar 

  20. Mieusset, J.L., Krois, D., Pacar, M., Brecker, L., Giester, G., Brinker, U.H.: Supramolecular recognition and structural elucidation of inclusion complexes of an achiral carbene precursor in β- and permethylated β-cyclodextrin. Org. Lett. 6, 1967–1970 (2004)

    Article  CAS  Google Scholar 

  21. Vijayan Enoch, I.V.M., Swaminathan, M.: Flourimetric and prototropic studies on the inclusion complexation of 2-amino and 4-aminodiphenyl ethers with b-cyclodextrin: unusual behavior of 4-aminodiphenyl ether. J. Lumin. 127, 713–720 (2007)

    Article  Google Scholar 

  22. Karaca Balta, D., Arsu, N.: Host/guest complex of β-cyclodextrin/5-thia pentacene-14-one for photoinitiated polymerization of acrylamide in water. J. Photoch. Photobio. A 200, 377–380 (2008)

    Article  Google Scholar 

  23. Jullian, C., Orosteguis, T., Pérez-Cruz, F., Sánchez, P., Mendizabal, F., Olea-Azar, C.: Complexation of morin with three kinds of cyclodextrin A thermodynamic and reactivity study. Spectrochim. Acta. A 71, 269–275 (2008)

    Article  Google Scholar 

  24. Jullian, C., Miranda, S., Zapata-Torres, G., Mendizábal, F., Olea-Azar, C.: Studies of inclusion complexes of natural and modified cyclodextrin with (+)catechin by NMR and molecular modeling. Bioorg. Med. Chem. 15, 3217–3224 (2007)

    Article  CAS  Google Scholar 

  25. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr. J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CT (2004)

  26. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988). http://pra.aps.org/abstract/PRA/v38/i6/p3098_1

    Google Scholar 

  27. Perdew, J.P.: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824 (1986)

    Article  Google Scholar 

  28. Eichkorn, K., Treutler, O., Öhm, H., Häser, M., Ahlrichs, R.: Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Lett. 242, 652–660 (1995)

    Article  CAS  Google Scholar 

  29. Bergner, A., Dolg, M., Kuechle, W., Stoll, H., Preuss, H.: Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 80, 1431–1441 (1993)

    Article  CAS  Google Scholar 

  30. Morris, G.M., Goodshell, D.S., Hallyday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)

    Article  CAS  Google Scholar 

  31. Andrade-Dias, C., Goodfellow, B.J., Cunha-Silva, L., Teixeira-Dias, J.J.C.: Inclusion complexes of 2-phenoxyethanol and alkoxyethanols in cyclodextrins: an 1H NMR study. J. Incl. Phenom. Macrocycl. Chem. 57, 151–156 (2007)

    Article  CAS  Google Scholar 

  32. Ramusino, M.C., Bartolomei, M., Gallinella, B.: 1H NMR, UV and circular dichroism study of inclusion complex formation between the 5-lipoxygenase inhibitor zileuton and β- and γ-cyclodextrins. J. Inclus. Phenom. Mol. 32, 485–498 (1998)

    Article  CAS  Google Scholar 

  33. Fielding, L.: Determination of association constants (Ka) from solution NMR data. Tetrahedron 56, 6151–6170 (2000)

    Article  CAS  Google Scholar 

  34. Kwaterczak, A., Duszczyk, K., Bielejewska, A.: Comparison of chiral separation of basic drugs in capillary electrophoresis and liquid chromatography using neutral and negatively charged cyclodextrins. Anal. Chim. Acta 645, 98–104 (2009)

    Article  CAS  Google Scholar 

  35. Liu, L., Guo, Q.X.: The driving forces in the inclusion complexation of cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 42, 1–14 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C. A. R thanks to CONICYT PhD scholarship, DPP scholarship stay, Fondecyt project 11080038 and CONICYT project 24091026; R. M. A. thanks to CONICYT PhD scholarship, and to S. Miranda.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Jullian or C. Olea-Azar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acuña-Rougier, C., Mera-Adasme, R., Jullian, C. et al. NMR as a tool for simultaneous study of diastereoisomeric inclusion complexes formed by racemic mixture of 4′-hydroxyflavanone and heptakis-(2,6-O-dimethyl)-β-cyclodextrin. J Incl Phenom Macrocycl Chem 68, 339–346 (2010). https://doi.org/10.1007/s10847-010-9793-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9793-5

Keywords

Navigation