Skip to main content
Log in

Thermal decomposition behaviors of β-cyclodextrin, its inclusion complexes of alkyl amines, and complexed β-cyclodextrin at different heating rates

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The present work revealed there was a conceptual difference in the thermal decomposition behaviors between the complexed β-cyclodextrin (CD) in an inclusion system and the β-CD complex of guest. The thermal decomposition behaviors of the solid inclusion complexes of β-CD with ethylenediamine (Eda), diethylenetriamine (Dta) and triethylamine (Tea) were investigated using nonisothermal thermogravimetry (TG) analysis based on weight loss as a function of temperature. In view of TG profiles, a consecutive mechanism describing the formation and thermal decomposition of the three solid supermolecules of β-CD was presented. Heating rate has very different effects on the thermal decomposition behaviors of these complexes. The faster the heating rate is, the higher the melting-decomposition point of the complexed β-CD in an inclusion system is, and on the whole the bigger the rate constant (k) of the thermal decomposition reaction of the complexed β-CD is. The thermal decomposition process of the complexed β-CD for each inclusion system is determined to be simple first-order reaction using Ozawa method. The apparent activation energies (E a) and frequency factors (A) of the thermal decomposition reactions of the complexed β-CD molecules have been also calculated. It is found that when the decomposition reaction of the complexed β-CD encountered a large value of E a, such as that in Dta–β-CD system, an apparent compensation effect of A on E a can provide enough energy to conquer the reaction barrier in prompting the k value of thermal decomposition reaction of the complexed β-CD according to Arrhenius equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743 (1998)

    Article  CAS  Google Scholar 

  2. Wenz, G.: Cyclodextrins as building-blocks for supramolecular structures and functional units. Angew. Chem., Int. Ed. Engl. 33, 803 (1994)

    Article  Google Scholar 

  3. Song, L.X., Meng, Q.J., You, X.Z.: Cyclodextrins and their inclusion compounds. Chin. J. Inorg. Chem. 13, 368 (1997)

    CAS  Google Scholar 

  4. Cao, Y.J., Lu, X.H., Guo, Q.X.: Theoretical study of the inclusion processes of ibuprofen enantiomers with native and modified β-CDs. J. Incl. Phenom. Mol. Recogn. Chem. 46, 195 (2003)

    Article  CAS  Google Scholar 

  5. Hapiot, F., Tilloy, S., Monflier, E.: Cyclodextrins as supramolecular hosts for organometallic complexes. Chem. Rev. 106, 767 (2006)

    Article  CAS  Google Scholar 

  6. Song, L.X.: Molecular recognition of double cyclodextrin bridged with amino acid derivatives in aqueous solution. Acta Chim. Sin. 59, 1201 (2001)

    CAS  Google Scholar 

  7. Grechin, A.G., Buschmann, H.J., Schollmeyer, E.: Complexation of gaseous guests by solid host. I. Quantitative thermodynamic approach for the reactions of β-Cyclodextrin with amines using data in aqueous solution. Thermochim. Acta 449, 67 (2006)

    Article  CAS  Google Scholar 

  8. Aki, H., Niiya, T., Iwase, Y., Kawasaki, Y., Kumai, K., Kimura, T.: Multimodal inclusion complexes of ampicillin with β-cyclodextrins in aqueous solution. Thermochim. Acta 416, 87 (2004)

    Article  CAS  Google Scholar 

  9. Vega-Rodriguez, A., Pineiro, A., Perez-Casas, S.: Thermodynamics of the interaction between hydroxypropyl-α-cyclodextrin and alkanols in aqueous solutions. Thermochim. Acta 405, 109 (2003)

    Article  CAS  Google Scholar 

  10. Zhang, C.P., Zhang, Y.G.: Cyclodextrin-based pharmaceutics: past, present and future. Yaoxue Tongbao 22, 101 (1987)

    CAS  Google Scholar 

  11. Anigboga, V.C., Warner, G.M.: Fluorescence studies of the effects of t-butyl functionalities on the formation of ternary β-cyclodextrin complexes with pyrene. Appl. Spectrosc. 50, 995 (1996)

    Article  Google Scholar 

  12. Song, L.X., Teng, C.F., Yang, Y.: Preparation and characterization of the solid inclusion compounds of α-, β-cyclodextrin with phenylalanine (D-, L- and DL-Phe) and tryptophan (D-, L- and DL-Trp). J. Incl. Phenom. Macrocyc. Chem. 54, 221 (2006)

    Article  CAS  Google Scholar 

  13. Yang, Y., Song, L.X.: Study on the inclusion compounds of eugenol with α-, β-, γ- and heptakis(2,6-di-O-methyl)-β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 53, 27 (2005)

    Article  CAS  Google Scholar 

  14. Song, L.X., Meng, Q.J., You, X.Z.: Study on the inclusion compounds of β-cyclodextrin with diphenyl and its derivates.Acta Chim. Sin. 53, 916 (1995)

    CAS  Google Scholar 

  15. Garcia-Zubiri, I.X., Gonzalez-Gaitano, G., Isasi, J.R.: Thermal stability of solid dispersions of naphthalene derivatives with β-cyclodextrin and β-cyclodextrin polymers. Thermochim. Acta 444, 57 (2006)

    Article  CAS  Google Scholar 

  16. Giordano, F., Novak, C., Moyano, J.R.: Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim. Acta 380, 123 (2001)

    Article  CAS  Google Scholar 

  17. Feng, G.Z., Huang, X., Lu, K.: The preparation of inclusion compound of β-cyclodextrin with eicosapentaenoic acid (EPA) and it’s property of the thermal decomposition kinetics. J. Zhengzhou Inst. Technol. 3, 44 (2004)

    Google Scholar 

  18. Zheng, Y., Weng, J.B., Chen, R.Y.: Study on the thermal decomposition kinetics of β-cyclodextrin and phenylalanine using thermogravimetry. J. Fujian Teachers Univ. 13, 55 (1997)

    Google Scholar 

  19. Li, G.S., Yong, G.P., Yan, X.Y., Hu, Y.: Comparison to the thermal decomposition kinetics of several inclusion complex of β-cyclodextrin. Chem. Res. Appl. 15, 101 (2003)

    CAS  Google Scholar 

  20. Tian, S.J., Cheng, Q.T., Xi, G.X., Lou, X.D., Li, J.H.: Preparation of inclusion complex of benzyl acetate with β-cyclodextrin and studies on its thermal dissociation. Acta Phys. Chim. Sin. 13, 459 (1997)

    CAS  Google Scholar 

  21. Luo, L.B., Chen, H.L., Wang, F., Dai, Q.P., Tang, W.X.: Thermolysis of β-cyclodextrin/alkylcobaloxime inclusion complexes in the solid state. Thermochim. Acta 298, 129 (1997)

    Article  CAS  Google Scholar 

  22. Song, L.X., Meng, Q.J., You, X.Z.: Study on inclusion compound of β-cyclodextrin and vanillin. Chem. Res. Appl.6, 99 (1994)

    Google Scholar 

  23. Toda, F., Tanaka, K., Sekikawa, A.: Host-guest complex formation by a solid-solid reaction. J. Chem. Soc., Chem. Commun. 279–280 (1987)

  24. Buvarcza, A., Barcza, L.: Changes in the solubility of β-cyclodextrin on complex formation: guest enforced solubility of β-cyclodextrin inclusion complexes. J. Incl. Phenom. Macrocyclic Chem. 36, 355 (2006)

    Article  Google Scholar 

  25. Song, L.X., Meng, Q.J.: Study on inclusion compound of β-cyclodextrin and 4,4′-bipyridyl. Chin. J. Inorg. Chem. 10, 370 (1994)

    CAS  Google Scholar 

  26. Song, L.X., Meng, Q.J., You, X.Z.: Study on the inclusion compound of β-cyclodextrin with (η5-cyclopentadienyl)tricarbonylmanganese(0). Chin. J. Chem. 13, 311 (1995)

    Article  CAS  Google Scholar 

  27. Li, J., Zhou, C., Wang, G., Tao, Y., Liu, Q., Li, Y.: Isothermal and nonisothermal crystallization kinetics of elastomeric polypropylene. Polym. Test. 21, 583 (2002)

    Article  CAS  Google Scholar 

  28. Chen, P.F.: Study on the thermal decomposition kinetics of inclusion complex of β-cyclodextrin and methyl orange. J. Fujian Teachers Univ-Nature Sci. 14, 47 (1998)

    Google Scholar 

  29. Ozawa, T.: A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881 (1965)

    Article  CAS  Google Scholar 

  30. Liu, Z.H.: Introduction to Thermal Analysis. Chemical Industry Press, 104 (1991)

  31. Hu, B.H.: The synthesis of urushiol titanium chelate polymers and their structural characteristics. J. Polym. Sci. 11, 198 (1993)

    CAS  Google Scholar 

  32. Demsar, A., Bukovec, N., Bukovec, P.: Decomposition kinetics of β-cyclodextrin and inclusion complex of β-Cyclodextrin with ibuproxam, 2-(4-isobutylphenyl)propiohydroxamic acid. Thermochim. Acta 178, 75 (1991)

    Article  CAS  Google Scholar 

  33. Song, L.X., Meng, Q.J., You, X.Z.: Study on the multiple recognition of β-cyclodextrin dimer bridged with two 1,2-diamioethane. Acta Chim. Sin. 54, 777 (1996)

    CAS  Google Scholar 

  34. Santos, J.G., Conceicao, M.M., Trindade, M.F.S., Araujo, A.S., Fernandes, V.J., Souza, A.G.: Kinetic study of dipivaloylmethane by Ozawa method. J. Therm. Anal. Cal. 75, 591 (2004)

    Article  CAS  Google Scholar 

  35. Rocco, J.A.F.F., Lima, J.E.S., Frutuoso, A.G., Iha, K., Ionashiro, M., Matos, J.R., Suarez-Iha, M.E.V.: Thermal degradation of a composite solid propellant examined by DSC – Kinetic study. J. Therm. Anal. Cal. 75, 551 (2004)

    Article  CAS  Google Scholar 

  36. Li, G.S., Yong, G.P., Yan, X.Y., Lin, H.: Study on the thermal decomposition kinetics of β-cyclodextrin and vanillin inclusion complex. Food Sci. 23, 42 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Xin Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, L.X., Teng, C.F., Xu, P. et al. Thermal decomposition behaviors of β-cyclodextrin, its inclusion complexes of alkyl amines, and complexed β-cyclodextrin at different heating rates. J Incl Phenom Macrocycl Chem 60, 223–233 (2008). https://doi.org/10.1007/s10847-007-9369-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9369-1

Keywords

Navigation