Skip to main content
Log in

The role played by head–tail configuration on the molecular weight distribution of α-cyclodextrin tubes

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Supramolecular complexes consisting of cyclic molecules, such as cyclodextrins (CD), and polymeric chains have attracted considerable attention, being addressed in literature as novel molecular assembly. The so-called molecular tube (MT), synthesized by cross-linking adjacent α-CD in a polyrotaxane, is expected to act as host for large molecules in inclusion processes. In addition, these tubes can also be used as building-blocks in the formulation of novel materials. Molecular tubes constructed with α-cyclodextrin are obtained as a mixture containing entities with various molecular weights, and the molecular features determining the tube size distribution are not completely understood. In this paper, we propose the use of a statistical procedure based on binary numbers to examine the MT formation process. A complete analysis of the distinct orientations between cyclodextrin’s units was made and, in the light of the approximations of our model, we pointed out, on quantitative basis, that the molecular weight distribution of α-cyclodextrin MTs can be explained assuming imperfections in the cross-linking process due to the existence of head-to-tail (HT) arrangements in the polyrotaxanes employed in synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lehn, J.M.: Supramolecular chemistry: from molecular information towards self-organization and complex matter. Rep. Prog. Phys. 67, 249–265 (2004)

    Article  Google Scholar 

  2. Lehn, J.M.: Supramolecular chemistry: concepts and perspectives. VCH, Weinheim (1995)

    Google Scholar 

  3. Lehn, J.M.: Perspectives in supramolecular chemistry – from molecular recognition towards self-organization. Pure Appl. Chem. 66, 1961–1966 (1994)

    Article  CAS  Google Scholar 

  4. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)

    Article  CAS  Google Scholar 

  5. Barr, L., Dumanski, P.G., Easton, C.J., Harper, J.B., Lee, K., Lincoln, S.F., Meyer, A.G., Simpson, J.S.: Cyclodextrin molecular reactors. J. Incl. Phenom. Macrocycl. Chem. 50, 19–24 (2004)

    CAS  Google Scholar 

  6. Mcgown, L.B., Li, G.: Molecular nanotube. Aggregate of beta-cyclodextrins and gamma-cyclodextrins linked by diphenylhexatrienes. Science 264, 249–251 (1994)

    Article  Google Scholar 

  7. Shigekawa, H., Miyake, K., Sumaoka, J., Harada, A.: The molecular abacus: STM manipulation of cyclodextrin necklace. J. Am. Chem. Soc. 122, 5411–5412 (2000)

    Article  CAS  Google Scholar 

  8. Topchieva, I.N., Tonelli, A.E., Panova, I.G., Matuchina, E.V., Kalashnikov, A.F., Gerasimov, V.I., Rusa, C.C., Rusa, M., Hunt, M.A.: Two-phase channel structures based on alpha-cyclodextrin-polyethylene glycol inclusion complexes. Langmuir 20, 9036–9043 (2004)

    Article  CAS  Google Scholar 

  9. Bergamini, J.F., Lagrost, C., Chane Ching, K.I., Jouini, M., Lacroix, J.C., Aeiyach, S., Lacaze, P.C.: Host–guest complexation: a general strategy for electrosynthesis of conductive polymers. Synth. Metals 102, 1538–1539 (1999)

    Article  CAS  Google Scholar 

  10. Belosludov, R.V., Sato, H., Farajian, A.A., Mizuseki, H., Kawazoe, Y.: Theoretical study of insulated wires based on polymer chains encapsulated in molecular nanotubes. Thin Solid Films 438, 80–84 (2003)

    Article  Google Scholar 

  11. Shimomura, T., Akai, T., Abe, T., Ito, K.: Atomic force microscopy observation of insulated molecular wire formed by conducting polymer and molecular nanotube. J. Chem. Phys. 116, 1753–1756 (2002)

    Article  CAS  Google Scholar 

  12. Yoshida, K., Shimomura, T., Ito K., Hayakawa, R.: Inclusion complex formation of cyclodextrin and polyaniline. Langmuir 15, 910–913 (1999)

    Article  CAS  Google Scholar 

  13. Easton, C.J., Lincoln, S.F., Barr, L., Onagi, H.: Molecular reactors and machines - applications, potential, and limitations. Chem. Eur. J. 10, 3120–3128 (2004)

    Article  CAS  Google Scholar 

  14. Lipkowitz, K.B., Raghothama, S., Yang, J.: Enantioselective binding of tryptophan by alpha-cyclodextrin. J. Am. Chem. Soc. 114, 1554–1562 (1992)

    Article  CAS  Google Scholar 

  15. Liu, Y., Han, B.H., Sun, S.X., Wada, T., Inoue, Y.: Molecular recognition study on supramolecular systems. 20. Molecular recognition and enantioselectivity of aliphatic alcohols by l-tryptophan-modified beta-cyclodextrin. J. Org. Chem. 64, 1487–1493 (1999)

    Article  CAS  Google Scholar 

  16. Liu, Y., Zhao, Y.L., Zhang, H.Y., Fan, Z., Wen, G.D., Ding, F.: Spectrophotometric study of inclusion complexation of aliphatic alcohols by beta-cyclodextrins with azobenzene tether. J. Phys. Chem. B. 108, 8836–8843 (2004)

    Article  CAS  Google Scholar 

  17. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)

    Article  CAS  Google Scholar 

  18. Nepogodiev, S.A., Stoddart, J.F.: Cyclodextrin-based catenanes and rotaxanes. Chem. Rev. 98, 1959–1976 (1998)

    Article  CAS  Google Scholar 

  19. Wenz, G., Han, B.H., Muller, A.: Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106, 782–817 (2006)

    Article  CAS  Google Scholar 

  20. Harada, A., Kamachi, M.: Complex-formation between poly(ethylene glycol) and alpha-cyclodextrin. Macromolecules. 23, 2821–2823 (1990)

    Article  CAS  Google Scholar 

  21. Wenz, G., Keller, B.: Threading cyclodextrin rings on polymer-chains. Angew. Chem. Int. Ed. Engl. 31, 197–199 (1992)

    Article  Google Scholar 

  22. Harada, A., Li, J., Kamachi, M.: The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356, 325–327 (1992)

    Article  CAS  Google Scholar 

  23. Harada, A., Suzuki, S., Okada, M., Kamachi, S.: Preparation and characterization of inclusion complexes of polyisobutylene with cyclodextrins. Macromolecules 29, 5611–5614 (1996)

    Article  CAS  Google Scholar 

  24. Harada, A., Li, J., Suzuki, S., Kamachi, M.: Complex-formation between polyisobutylene and cyclodextrins- inversion of chain-length selectivity between beta-cyclodextrin and gamma-cyclodextrin. Macromolecules 26, 5267–5268 (1993)

    Article  CAS  Google Scholar 

  25. Harada, A., Li, J., Kamachi, M.: Preparation and properties of inclusion complexes of poly(ethylene glycol) with alpha-cyclodextrin. Macromolecules 26, 5698–5703 (1993)

    Article  CAS  Google Scholar 

  26. Harada, A., Li, J., Kamachi, M.: Preparation and characterization of a polyrotaxane consisting of monodisperse poly(ethylene glycol) and alpha-cyclodextrins. J. Am. Chem. Soc. 116, 3192–3196 (1994)

    Article  CAS  Google Scholar 

  27. Harada, A., Li, J., Kamachi, M.: Formation of inclusion complexes of monodisperse oligo(ethylene glycol) with alpha-cyclodextrin. Macromolecules 27, 4538–4543 (1994)

    Article  CAS  Google Scholar 

  28. Harada, A., Okada, M., Li, J., Kamachi, M.: Preparation and characterization of inclusion complexes of poly(propylene glycol) with cyclodextrins. Macromolecules 28, 8406–8411 (1995)

    Article  CAS  Google Scholar 

  29. Harada, A.: Supramolecular assemblies through macromolecular recognition by cyclodextrins. Supramol. Sci. 3, 19–23 (1996)

    Article  CAS  Google Scholar 

  30. Miyake, K., Yasuda, S., Harada, A., Sumaoka, J., Shigekawa, H., Komiyama, M.: Formation process of cyclodextrin necklace - analysis of hydrogen bonding on a molecular level. J. Am. Chem. Soc. 125, 5080–5085 (2003)

    Article  CAS  Google Scholar 

  31. Harada, A., Li, J., Kamachi, M.: Synthesis of a tubular polymer from threaded cyclodextrins. Nature 364, 516–518 (1993)

    Article  CAS  Google Scholar 

  32. Ikeda, T., Qoya, T., Yui, N.: Inclusion complexation of fractionated alpha-cyclodextrin molecular tube with sodium dodecyl sulfate. Polym. Adv. Technol. 11, 830–836 (2000)

    Article  CAS  Google Scholar 

  33. Ikeda, T., Hirota, E., Qoya, T., Yui, N.: Thermodynamic analysis of inclusion complexation between alpha-cyclodextrin-based molecular tube and sodium alkyl sulfonate. Langmuir 17, 234–238 (2001)

    Article  CAS  Google Scholar 

  34. Ikeda, T., Lee, W.K., Ooya, T., Yui, N.: Thermodynamic analysis of inclusion complexation between alpha-cyclodextrin-based molecular tube and poly(ethylene oxide)-block-poly(tetrahydrofuran)-block-poly(ethylene oxide) triblock copolymer. J. Phys. Chem. B 107, 14–19 (2003)

    Article  CAS  Google Scholar 

  35. van den Boogaard, M.: Cyclodextrin-containing supramolecular structures: from pseudo-polurotaxanes toward molecular tubes, insulated molecular wires and topological networks. Ph.D.-Thesis, University of Groningen (2003)

  36. Nascimento Jr., C. S., Anconi C.P.A., Dos Santos, H.F., De Almeida, W.: Theoretical study of the α-cyclodextrin dimer. J. Phys. Chem. A 109, 3209–3219 (2005)

    Article  CAS  Google Scholar 

  37. Rao, C.T., Pitha, J.: Reactivities at the O-2, O-3, and O-6 positions of cycloamyloses in Hakomori methylation. Carbohyd. Res. 220, 209–213 (1991)

    Article  CAS  Google Scholar 

  38. See for example: Gowariker, V.R., Viswanathan, N.V., Sreedhar, J.: Polym. Sci. Wiley, New Delhi (1987)

Download references

Acknowledgements

The authors would like to thank the Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) for financial support. This work is part of the project PRONEX-FAPEMIG/EDT-537/05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélio F. Dos Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anconi, C.P.A., Nascimento, C.S., De Almeida, W.B. et al. The role played by head–tail configuration on the molecular weight distribution of α-cyclodextrin tubes. J Incl Phenom Macrocycl Chem 60, 25–33 (2008). https://doi.org/10.1007/s10847-007-9348-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9348-6

Keywords

Navigation