Skip to main content

Advertisement

Log in

Experimental and theoretical spectral properties of ethyl 2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetate doped sol-gel materials: new materials with potential optical application

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Silica xerogels and monoliths, containing ethyl 2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetate (K4) or Sm3 +  ions and K4 are prepared by sol-gel technique. NMR investigations, UV/Vis, IR- and luminescence spectral properties of K4 in solution and in monoliths are presented. The IR-spectroscopic properties of the prepared sol-gel materials are examined by applying the reduced-difference procedure to non-polarized IR-spectra. The results show that the sol-gel medium did not interact with K4 as well as in the presence of Sm3+ ions the K4 form a [Sm(L)2(H2O)4] × (NO3)3 complex in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Levy, D.: Photochromic sol-gel materials. Chem. Mater. 9, 2666–2670 (1997).

    Article  CAS  Google Scholar 

  2. Higginbotham, C., Pike, Ch.F., Rice, J.K.: Spectroscopy in sol-gel matrices. J. Chem. Educ. 75(4), 461–464 (1998).

    Article  CAS  Google Scholar 

  3. Mauritz, K.A.: http://www.psrc.usm.edu/mauritz/solgel.html. Cited 3 March 2005 (2005).

  4. Krihak, M., Murtagh, M.T., Shahriari, M.R.: A spectroscopic study of the effects of various solvents and sol-gel hosts on the chemical and photochemical properties of Thionin and Nile Blue A. J. Sol-gel Sci. Technol. 10, 153–163 (1997).

    Article  CAS  Google Scholar 

  5. Shou, H., Ye, J., Yu, Q.: Luminescence properties of benzoic acid-terbium complexes. J. Lumin. 42, 29 (1988).

    Article  CAS  Google Scholar 

  6. Curry, R.J., Gillin, W.P.: 1.54 μm electroluminescence from Erbium (III) tris(8-hydroxyquinoline) (ErQ)-based organic light-emitting diodes. Appl. Phys. Lett. 75(10), 1380–1382 (1999).

    Article  CAS  Google Scholar 

  7. Steemers, F.J., Verboom, W., Reinhoudt, D.N., van der Tal, E.B., Verhoeven, J.W.: New sensitizer-modified Calix[4]arenas enabling near-UV exitation of complexed luminescent lanthanide ions. J. Am. Chem. Soc. 117, 9408–9414 (1995).

    Article  CAS  Google Scholar 

  8. Roh, S.-G., Baek, N.S., Hong, K.-S., Oh, J.B., Kim, H.K.: Synthesis and photophysical properties of luminescent Erbium (III) complexes based on Coumarin derivatives for advanced photonics applications. Mol. Cryst. Liq. Cryst. 425, 167–172 (2004).

    Article  CAS  Google Scholar 

  9. Kostova, I.P., Manolov, I.I., Radulova, M.K.: Stability of the complexes of some lanthanides with Coumarin derivatives. I. Cerium(III)-4-methyl-7hydroxycoumarin. Acta Pharm. 54, 37–47 (2004).

    CAS  Google Scholar 

  10. Kostova, I.P., Manolov, I.I., Radulova, M.K.: Stability of the complexes of some lanthanides with Coumarin derivatives. II. Neodymium(III)-acenocoumarol. Acta Pharm. 54, 119–131 (2004).

    CAS  Google Scholar 

  11. Dann, O., Illing, G.: Über Den Verlauf Der Pechmann-Reaktion. Liebigs Ann. Chem. 605, 158–167 (1957).

    Article  CAS  Google Scholar 

  12. Körner, P.: 3-Alkyl- and 3-Aryl-(7-oxo-7H-furo3,2-g]chromen-5-yl)alkanoic acids as inhibitors of leukotriene B4 biosynthesis. Arch. Pharm. Pharm. Med. Chem. 336, 273–284 (2003).

    Article  CAS  Google Scholar 

  13. Bredol, M., Gutzov, S.: Effect of germanium codoping on the luminescence of Terbium doped silica xerogels. Opt. Mater. 20, 233–239 (2002).

    Article  CAS  Google Scholar 

  14. Gutzov, S., Bredol, M.: Preparation and optical properties of silica xerogels doped with rare earth ions. C. R. Acad. Bulg. Sci. 56, 37–42 (2002).

    Google Scholar 

  15. Bredol, M., Gutzov, S., Jüstel, Th.: Preparation and optical properties of holmium doped silica xerogels. J. Non-Cryst. Solids 321, 1105–1107 (2003).

    Google Scholar 

  16. Gutzov, S., Bredol, M.: J. Mat. Sci. Lett. 41 (2006), doi: 10.1007/s10853-005-2184-4.

  17. Myers J.L., Well A.D.: Research Design and Statistical Analysis. Harper Collins, New York, pp. 14–155 (1991).

    Google Scholar 

  18. Spiegel M.R.: Theory and Problems of Probability and Statistics. McGraw-Hill, New York, pp. 116–117 (1992).

    Google Scholar 

  19. Park, J.W., Ferracane, J.L.: Measuring the residual stress in dental composites using a ring slitting method. Dent. Mater. 21(9), 882–889 (2005).

    Article  CAS  Google Scholar 

  20. Ivanova, B.B., Tsalev, D.L., Arnaudov, M.G.: Validation of reducing-difference procedure for the interpretation of non-polarized infrared spectra of n-component solid mixtures. Talanta 69, 822–828 (2006).

    Article  CAS  Google Scholar 

  21. Arnaudov, M.G., Dimitriev, Y.: Study on the structural transition in binary tellurite glasses by means of reduced infrared spectra. Phys. Chem. Glasses 42, 99–102 (2001).

    CAS  Google Scholar 

  22. Gillette, P.C., Koenig, J.L.: Objective criteria for absorbance subtraction. Appl. Spectrosc. 38, 334–337 (1984).

    Article  CAS  Google Scholar 

  23. Friese, M.A., Banerjee, S.: Lignin determination by FT-IR. Appl. Spectrosc. 46, 246–248 (1992).

    Article  CAS  Google Scholar 

  24. Banerjee, S., Li, K.: Interpreting multicomponent infrared spectra by derivative minimization. Appl. Spectrosc. 45, 1047–1049 (1991).

    Article  CAS  Google Scholar 

  25. DALTON (2005) A molecular electronic structure program, Release 2.0. http://www.kjemi.uio.no/software/dalton/dalton.html. Cited 5 Mar 2005.

  26. Zhurko, G.A., Zhurko, D.A.: ChemCraft: Tool for treatment of chemical data, Lite version build 08 (freeware) (2005).

  27. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  28. Lee, C., Yang, W., Parr, R.G.: Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  29. Peng, C., Ayala, Y., Schlegel, H.B., Frisch, M.J.: Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comp. Chem. 17(1), 49–56 (1996).

    Article  CAS  Google Scholar 

  30. Scott, A.P., Radom, L.J.: Harmonic vibrational frequencies: an evaluation of hartree-fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem. 100, 16502–16513 (1996).

    Article  CAS  Google Scholar 

  31. Hehre W.J., Radom L., Schleyer, P.v.R., Pople J.A.: Ab Initio MO, Theory. Wiley, New York, pp. 9–45 (1986).

    Google Scholar 

  32. Foresman, J.B., Head-Gordon, M., Pople, J.A., Frish, M.J.: Toward a systematic molecular orbital theory for excited states. J. Phys. Chem. 96, 135–146 (1992).

    Article  CAS  Google Scholar 

  33. Kodaira, C.A., Brito, H.E., Teotonia, E.S., Felinto, M., Malta, O.L., Brito, G.: Photoluminescence behavior of the Sm3+ and Tb3+ ions doped into the Gd2(WO4)3 matrix prepared by the Pechini and Ceramic methods. J. Braz. Chem. Soc. 15(6), 890–896 (2004).

    Article  CAS  Google Scholar 

  34. Shionoya, Sh., Yen, W.M.: Phosphor Handbook. CRC Press, Boca Raton, p. 184 (1999).

  35. Alonso, M.-T., Brunet, E., Juanes, O., Rodrìguez-Ubis, J.-C.: Synthesis and photochemical properties of new Coumarin-derived ionophores and their alkaline-earth and Lanthanide complexes. J. Photochem. Photobiol. A: Chem. 147, 113–125 (2002).

    Article  CAS  Google Scholar 

  36. Brankova, T., Bekiari, V., Lianos, P.: Photoluminescence from sol-gel organic/inorganic hybrid gels obtained through carboxylic acid solvolysis. Chem. Mater. 15, 1855–1859 (2003).

    Article  CAS  Google Scholar 

  37. Kang, J.-G., Kang, H.-J., Jung, J.-S., Yun, S.S., Kim, Ch.-H.: Crystal structures and luminescence properties of [Ln(NTA)2·H2O]3− complexes (Ln = Sm3+, Eu3+, Gd3+, Tb3+, Ho3+, and NTA = Nitrilotriacetate). Bull. Korean Chem. Soc. 25(6), 852–858 (2004).

    Article  CAS  Google Scholar 

  38. Varsanyi, G.: Vibrational Spectra of Benzene Derivatives. Academy Press, Budapest, pp. 1–413 (1969).

    Google Scholar 

  39. Chung, D.Y., Lee, E.H., Kimura, T.: Laser-induced luminescence study of Samarium(III) Thiodiglycolate complexes. Bull. Korean Chem. Soc. 24(9), 1396–1398 (2003).

    Article  CAS  Google Scholar 

  40. Zhang, J.-J., Ren, N., Wang, Y.-X., Xu, S.-L., Wang, R.-F., Wang, S.-P.: Synthesis, crystal structure and thermal decomposition mechanism of a samarium o-Chlorobenzoate complex with 1,10-Phenanthroline. J. Braz. Chem. Soc. 17(7), 1355–1359 (2006).

    CAS  Google Scholar 

  41. Ferenc, W., Walków-Dziewulskaj, A.: Complexes of light lanthanides with 2,4-dimethoxybenzoic acid. Serb. Chem. Soc. 65(1), 27–35 (2000).

    CAS  Google Scholar 

  42. Wang, R., Liu, H., Carducci, M.D., Jin, T., Zheng, Ch., Zheng, Z.: Lanthanide coordination with r-amino acids under near physiological pH conditions: Polymetallic complexes containing the cubane-Like [Ln4(μ3-OH)4]8+. Cluster Core Inorg. Chem. 40, 2743–2750 (2001).

    CAS  Google Scholar 

Download references

Acknowledgments

G.A. and I.P. thank the Ministry of Education for the Project “Leading University Research Centre for Nanoscience and Knowledge based Materials”. S.G. was supported by a Project BYX 08/05. B.K. thanks Alexander von Humboldt Foundation for supporting scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ahmed.

Electronic supplementary material

Below is the link to the electronic supplementary material

10847_2007_9309_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, G., Koleva, B., Gutzov, S. et al. Experimental and theoretical spectral properties of ethyl 2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetate doped sol-gel materials: new materials with potential optical application. J Incl Phenom Macrocycl Chem 59, 167–176 (2007). https://doi.org/10.1007/s10847-007-9309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9309-0

Keywords

Navigation