Skip to main content
Log in

Effect of ZnO nanoparticles on the Judd–Ofelt and radiative parameters of Sm3+ ions in sol–gel silica matrix

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The trivalent samarium ions doped with different concentrations of ZnO NPs in silicate glasses were prepared by the sol–gel technique. The structural and optical properties were characterized by using X-ray diffraction, Fourier transform infrared, scanning electron microscope, transmission electron microscope, optical absorption, and photoluminescence measurements at room temperature respectively. The structural analysis from X-ray diffraction, scanning electron microscope, and transmission electron microscope results confirmed the hexagonal wurtzite ZnO structure of all the nanoparticle samples. The evaluation has been made for the dependence of various radiative parameters along with the Judd–Ofelt of Sm3+ on the concentration of ZnO NPs. The effective network changing the nature of ZnO NPs has been revealed by the high value of Ω2 obtained in this system matrix. In the current investigation, the silica matrix's emission transition 4G5/2 → 6H9/2 of Sm3+, which corresponds to the red color observed at 653 nm, demonstrated excellent radiative behavior compared to other commonly used glass hosts. These results suggest that Sm3+ ions doped with ZnO NPs in sol–gel silicate glasses can be more efficient luminescent materials in the field of lasers and optical devices in the visible region. CIE Chromaticity diagram observed that these coordinates fall in the bluish-purple to yellowish-orange region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. H. Takahashi, High performance planar light wave circuit devices for large capacity transmission. Optic Expr. 19, 173–180 (2011)

    Article  Google Scholar 

  2. T. Kakkar, N. Bamiedakis, T.T. Fernandez, Z. Zhao, M. Irannejad, P. Steenson, A. Jha, R. Penty, I. White, G. Jose, Glass–polymer super lattice for integrated optics. Opt. Eng. 53, 071818 (2014). https://doi.org/10.1117/1.OE.53.7.071818

    Article  ADS  Google Scholar 

  3. S. Berneschi, A. Chiappini, M. Ferrari, S. Pelli, G.C. Righini, Erbium doped silica-hafnia glass ceramic waveguides. Phys. Status Solidi 8, 2875–2879 (2011). https://doi.org/10.1002/pssc.201084101

    Article  Google Scholar 

  4. N.Q. Vinh, N.N. Ha, T. Gregorkiewicz, Photonic properties of Er-doped crystalline silicon. Proc. IEEE 97, 1269–1282 (2009). https://doi.org/10.1109/JPROC.2009

    Article  Google Scholar 

  5. A. Chiasera, C. Meroni, F. Scotognella, Y.G. Boucher, G. Galzerano, A. Lukowiak, Coherent emission from fully Er3+ doped monolithic 1-D dielectric micro-cavity fabricated by rf-sputtering. Opt. Mater. 87, 107–111 (2019). https://doi.org/10.1016/j.optmat.2018.04.057

    Article  ADS  Google Scholar 

  6. B. Meenatchi, V. Sathiya Lakshmi, A. Manikandan, V. Renuga, A. Sharmila, K.R. Nandhine Deve, S.K. Jaganathan, Protic ionic liquid assisted synthesis and characterization of ferromagnetic cobalt oxide nanocatalyst. J. Inorg. Organomet. Polym. 27, 446–454 (2017)

    Article  Google Scholar 

  7. A. Manikandan, M. Durka, K. Seevakan, S. Arul Antony, A novel one-pot combustion synthesis and opto-magnetic properties of magnetically separable spinel MnxMg1-xFe2O4 (0.0≤x≤ 0.5) Nanophotocatalysts. J. Supercond. Nov. Magn. 28, 1405–1416 (2015)

    Article  Google Scholar 

  8. A. Manikandan, M. Durka, S. Arul Antony, A novel synthesis, structural, morphological, and opto-magnetic characterizations of magnetically separable spinel CoxMn1-xFe2O4 (0≤ x≤ 1) nano-catalysts. J. Supercond. Nov. Magn. 27, 2841–2857 (2014)

    Article  Google Scholar 

  9. E. Manikandan, M.K. Moodley, S.S. Ray, B.K. Panigrahi, R. Krishnan, K.G.M. Nair, A.K. Tyagi, Zinc oxide epitaxial thin-film deposited over carbon on various substrates by PLD technique. J. Nanosci. Nanotechnol. 10, 5601–5611 (2010)

    Article  Google Scholar 

  10. J.F. Zhu, Y.J. Zhu, Microwave-assisted one-step synthesis of polyacrylamide-metal (M = Ag, Pt, Cu) nanocomposites in ethylene glycol. J. Phys. Chem. B 110, 8593–8597 (2006)

    Article  Google Scholar 

  11. N.C.S. Selvam, A. Manikandan, L. John Kennedy, J. Judith Vijaya, Comparative investigation of zirconium oxide (ZrO2) nano and microstructures for structural, optical and photocatalytic properties. J. Colloid Inter. Sci. 389, 91–98 (2013)

    Article  ADS  Google Scholar 

  12. A.H. Shah, E. Manikandan, M.B. Ahmed, Enhanced bioactivity of Ag/ZnO nanorods-a comparative antibacterial study. J. Nanomed. Nanotech. 4, 6 (2013)

    Google Scholar 

  13. J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment. Appl. Surf. Sci. 367, 52–58 (2016)

    Article  ADS  Google Scholar 

  14. E. Manikandan, J. Kennedy, G. Kavitha, K. Kaviyarasu, M. Maaza, B.K. Panigrahi, U. Kamachi Mudali, Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications. J. Alloys & Comps 647, 141–145 (2015)

    Article  Google Scholar 

  15. J. Kennedy, B. Sundrakannan, R.S. Katiyar, A. Markwitz, Z. Li, W. Gao, Raman scattering investigation of hydrogen and nitrogen ion implanted ZnO thin films. Curr. Appl. Phys. 8, 291–294 (2008)

    Article  ADS  Google Scholar 

  16. P.P. Murmu, J. Kennedy, G.V.M. Williams, B.J. Ruck, S. Granville, S.V. Chong, Observation of magnetism, low resistivity, and magnetoresistance in the near-surface region of Gd implanted ZnO. Appl. Phys. Lett. 101, 082408 (2012)

    Article  ADS  Google Scholar 

  17. J. Kennedy, G.V.M. Williams, P.P. Murmu, B.J. Ruck, Intrinsic magnetic order and inhomogeneous transport in Gd-implanted zinc oxide. Phys. Rev. B 88, 214423 (2013)

    Article  ADS  Google Scholar 

  18. C.P. Reddy, V. Naresh, B.C. Babu, Photoluminescence and energy transfer process in Bi3+ /Sm3+ Co-doped phosphate zinc lithium glasses. Adv. Mater. Phys. Chem. 4, 165–171 (2014)

    Article  Google Scholar 

  19. J.F. Sanchez-Royo, G. Munoz-Matutano, M. Brotons-Gisbert, J.P. Martínez-Pastor, A. Segura, A. Cantarero, R. Mata, J. Canet-Ferrer, G. Tobias, E. Canadell, J. Marqués-Hueso, B.D. Gerardot, Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Res. 7, 1556–1568 (2014)

    Article  Google Scholar 

  20. I.A. Auwalu, M.A.Y. Hotoro, U.H. Jamo, D.G. Diso, Effect of samarium oxide on structural and optical properties of zinc silicate glass ceramics from waste material. Nano Hybrids Compos 22, 35–46 (2018). https://doi.org/10.4028/www.scientific.net/NHC.22.35

    Article  Google Scholar 

  21. K. Bhujel, S.S. Ningthoujam, L.R. Singh, S. Rai, Effect of solution aging on properties of spin coated zinc oxide thin films. Mater Today Proce. 46, 56–61 (2019). https://doi.org/10.1016/j.matpr.2020.07.099

    Article  Google Scholar 

  22. R. John, R. Rajakumari, Synthesis and characterization of rare earth ion doped nano ZnO. Nanomicro Lett 4, 65–72 (2012). https://doi.org/10.3786/nml.v4i2.p65-72

    Article  Google Scholar 

  23. U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, Comparative photocatalytic activity of sol-gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Adv. 8, 17582–17594 (2018). https://doi.org/10.1039/c8ra01638k

    Article  ADS  Google Scholar 

  24. E.E. Campos-Zuniga, I.L. Alonso-Lemus, V. Agarwal, J. Escorcia-Garcia, Sol-gel synthesis for stable green emission in samarium doped borosilicate glasses. Ceram In 45, 24052–24059 (2019). https://doi.org/10.1016/j.ceramint.2019.08.110

    Article  Google Scholar 

  25. D.A. Wheeler, J.Z. Zhang, Exciton dynamics in semiconductor nanocrystals. Adv. Mater. 25, 2878–2896 (2013). https://doi.org/10.1002/adma.201300362

    Article  Google Scholar 

  26. M. Novotny, E. Maresova, P. Fitl, J. Vlcek, M. Bergmann, M. Vondracek, R. Yatskiv, J. Bulr, P. Hubk, P. Hruska, Drahokoupil, N. Abdellaoui, M. Vrnata, J. Lancok, The properties of samarium-doped zinc oxide/phthalocyanine structure for optoelectronics prepared by pulsed laser deposition and organic molecular evaporation. Appl. Phys. A 122, 1–8 (2016). https://doi.org/10.1007/s00339-016-9759-6

    Article  Google Scholar 

  27. M. Vishwas, B.R. Nagabushana, D. Joseph, K.V.A. Gowda, S.B. Gandla, Low temperature combustion synthesis and characterization of undoped and samarium doped zinc oxide nanoparticles. J. Adv. Sci. Res. 13, 37–40 (2022). https://doi.org/10.55218/jasr.202213406

    Article  Google Scholar 

  28. J. Nath Mirdda, S. Mukhopadhyay, K. Ranjan Sahu, M. Nanda Goswami, C. Author, Enhancement of optical properties and dielectric nature of Sm3+ doped Na2O-ZnO-TeO2 Glass materials. J. Phys. Chem. Solids 167, 110776 (2022). https://doi.org/10.1016/j.jpcs.2022.110776

    Article  Google Scholar 

  29. K. Badreddine, A. Srour, R. Awad, A.I. Abou-Aly, The investigation of mechanical and dielectric properties of Samarium doped ZnO nanoparticles. Mater Res Express 7, 78–85 (2020). https://doi.org/10.1088/2053-1591/ab7064

    Article  Google Scholar 

  30. I.A. Auwalu, M.A.Y. Hotoro, U.H. Jamo, D.G. Diso, Effect of samarium oxide on structural and optical properties of zinc silicate glass ceramics from waste material. Nano Hybrids and Composites 22, 35–46 (2018). https://doi.org/10.4028/www.scientific.net/nhc.22.35

    Article  Google Scholar 

  31. N.F. Andrade Neto, R.G. Carvalho, L.M. Garcia, R.M. Nascimento, C.A. Paskocimas, E. Longo, M.R. Delmonte, F.V. Motta, Influence of doping with Sm3+ on photocatalytic reuse of ZnO thin films obtained by spin coating. Revista Materia 24, 678–684 (2019). https://doi.org/10.1590/s1517-707620190004.0814

    Article  Google Scholar 

  32. M. Faraz, F.K. Naqvi, M. Shakir, N. Khare, Synthesis of samarium-doped zinc oxide nanoparticles with improved photocatalytic performance and recyclability under visible light irradiation. New J. Chem. 42, 2295–2305 (2018). https://doi.org/10.1039/c7nj03927a

    Article  Google Scholar 

  33. Y. Hanifehpour, B. Soltani, A.R. Amani-Ghadim, B. Hedayati, B. Khomami, S.W. Joo, Synthesis and characterization of samarium-doped ZnS nanoparticles: a novel visible light responsive photocatalyst. Mater. Res. Bull. 76, 411–421 (2016). https://doi.org/10.1016/j.materresbull.2015.12.035

    Article  Google Scholar 

  34. R. Mondal, D. Biswas, A.S. Das, R.N. Ningthemcha, D. Deb, S. Bhattacharya, S. Kabi, Influence of samarium content on structural, thermal, linear and non-linear optical properties of ZnO–TeO2–P2O5 glasses. Mater. Chem. Phys. 255, 932–938 (2020). https://doi.org/10.1016/j.matchemphys.2020.123561

    Article  Google Scholar 

  35. I. Pal, A. Agarwal, S. Sanghi, M.P. Aggarwal, Investigation of spectroscopic properties, structure and luminescence spectra of Sm3+ doped zinc bismuth silicate glasses. Spectro. Acta A. Mol. Biol. Spectrosc 101, 74–81 (2013). https://doi.org/10.1016/j.saa.2012.09.047

    Article  ADS  Google Scholar 

  36. Nguyen Minh Ty, Dacheng Zhou, Jianbei Qiu, Ho Kim Dan, Broadband flat near/mid-infrared emissions of Tm3+–Ho3+ co-doped, and Tm3+–Ho3+–Yb3+ tri-doped zinc silicate glasses under 808 and 980 nm laser diode excitations. Infrared Phys. Technol. 111, 103483 (2020). https://doi.org/10.1016/j.infrared.2020.103483

    Article  Google Scholar 

  37. M. GuguHlengiwe, Luminescence Investigation of Trivalent Rare Earth Ions in Sol- Gel Derived SiO2 and ZnO co-doped Sio2:Pr3+, University of Free State, 2011.

  38. K. Kajihara, Recent advances in sol-gel synthesis of monolithic silica and silica-based glasses. J. Asian Ceram. Soc. 1, 121–133 (2013). https://doi.org/10.1016/j.jascer.2013.04.002

    Article  Google Scholar 

  39. V. Kumar, O.M. Ntwaeaborwa, T. Soga, V. Dutta, H.C. Swart, Rare earth doped zinc oxide nanophosphor powder : a future material for solid state lighting and solar cells. ACS Photonics 4, 2613–2637 (2017). https://doi.org/10.1021/acsphotonics.7b00777

    Article  Google Scholar 

  40. H. Kozuka, Handbook of sol-gel science and technology: processing, characterization, and applications (Kluwer Academic Publisher, New York, 2005). https://doi.org/10.5860/choice.42-5885

    Book  Google Scholar 

  41. L.T.T. Hiena, N. Van Dub, N.N. Hab, N.D. Hoab, T.N. Khiemb, N.D. Chiena, Optical Materials Photoluminescence enhancement OF Er3+-doped ZnO/SiO2 nanocomposites fabricated through two-step synthesis. Opt. Mater. 92, 262–266 (2019). https://doi.org/10.1016/j.optmat.2019.04.043

    Article  ADS  Google Scholar 

  42. M. Xiaoqi, L. Lianqiang, Z. Kaishun, L. Juncheng, The effect of SiO2 on TiO2 up-conversion photoluminescence film. Opt. Mater. 37, 367–370 (2014). https://doi.org/10.1016/j.optmat.2014.06.027

    Article  Google Scholar 

  43. D.S.C. Halin, M.M.A.B. Abdullah, N. Mahmed, S.N.A. Abdul Malek, P. Vizureanu, A.W. Azhari, Synthesis and characterization of TiO2/SiO2 thin film via sol-gel method. IOP Conf. Ser. Mater. Sci. Eng. 209, 87–96 (2017). https://doi.org/10.1088/1757-899X/209/1/012002

    Article  Google Scholar 

  44. C. Agustín-Saenz, J.A. Sanchez-García, M. Machado, M. Brizuela, O. Zubillaga, A. Tercjak, Broadband antireflective coating stack based on mesoporous silica by acid-catalyzed sol-gel method for concentrated photovoltaic application. Sol. Energy Mater. Sol. Cells 186, 154–164 (2018). https://doi.org/10.1016/j.solmat.2018.06.040

    Article  Google Scholar 

  45. T.T.V. Tran, T.M.D. Cao, Q.V. Lam, V.H. Le, Emission of Eu3+ in SiO2-ZnO glass and SiO2-SnO2 glass-ceramic: correlation between structure and optical properties of Eu3+ ions. J. Non Cryst. Solids 459, 57–62 (2017). https://doi.org/10.1016/j.jnoncrysol.2016.12.040

    Article  ADS  Google Scholar 

  46. X. Sun et al., Preparation of MgF2/SiO2 coating with broadband antireflective coating by using sol–gel combined with electron beam evaporation. Opt. Mater. 101, 2–10 (2020). https://doi.org/10.1016/j.optmat.2020.109739

    Article  Google Scholar 

  47. C.S. Lee, K.A. Matori, S.H. Ab Aziz, H.M. Kamari, I. Ismail, M.H.M. Zaid, Fabrication and characterization of glass and glass-ceramic from rice husk ash as a potent material for optoelectronic applications. J. Mater. Sci. Mater. Electron. 28, 17611–17621 (2017). https://doi.org/10.1007/s10854-017-7699-3

    Article  Google Scholar 

  48. F. Xiao et al., Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites. J. Phys. Chem. C 116(24), 13458–13462 (2012). https://doi.org/10.1021/jp304075g

    Article  Google Scholar 

  49. K.M.S. Dawngliana, A.L. Fanai, S. Rai, Structural and optical studies of Sm3+-doped silica glass along with TiO2 nanoparticles for photonic applications. J. Non-Cryst. Solids 607, 122226 (2023)

    Article  Google Scholar 

  50. K.R. Kandula, A. Sarkar, B.S. Bhaktha, Sol-gel fabrication and characterization of ZnO and Zn2SiO4 nanoparticles embedded silica glass-ceramic waveguides. Opt. Mater. Expr. 3, 2078–2085 (2013)

    Article  ADS  Google Scholar 

  51. Z. Fu, B. Yang, L. Li, W. Dong, C. Jia, W. Wu, An intense ultraviolet photoluminescence in sol–gel ZnO–SiO2 nanocomposites. J. Phys. Condens. Matter 15(17), 2867–2873 (2003)

    Article  ADS  Google Scholar 

  52. N.M. Shamhari, B.S. Wee, S.F. Chin, K.Y. Kok, Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution. Acta Chim. Slov. 65, 578–585 (2018)

    Article  Google Scholar 

  53. S. Talam, S.R. Karumuri, N. Gunnam, Synthesis characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol. 2012, 1–6 (2012)

    Article  Google Scholar 

  54. K.M.S. Dawngliana, S. Rai, Linear and nonlinear and optical properties of Sm3+ co-doped alumino-silicate glass prepared by sol-gel method. J. Non-Cryst. Solids 598, 121929 (2022)

    Article  Google Scholar 

  55. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, Tm3+. J. Chem. Phys. 49, 4424–4442 (1968). https://doi.org/10.1063/1.1669893

    Article  ADS  Google Scholar 

  56. W.T. Carnall, H. Cross white and H.M. Cross white, Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3, Argonne National Laboratory, Report no. ANL-78-XX-95, 1978.

  57. N. Dehingia, P. Gogoi, D. Kakoti, N. Rajkonwar, A. Boruah, P. Dutta, Effect of Ag nanoparticles on the Judd-Ofelt and radiative parameters of Sm3+ ions in sol–gel silica matrix. J. Lumin. 226, 117414 (2020)

    Article  Google Scholar 

  58. K.M.S. Dawnglianaa, A.L. Fanai, S. Rai, Structural and spectroscopic properties of Eu3+ ions in alumino-silicate glass. Indian J. Pure Appl. Phys. 61, 182–189 (2023). https://doi.org/10.56042/ijpap.v61i3.71028

    Article  Google Scholar 

  59. K.M.S. Dawngliana, A.L. Lalruatpuia, S. Fanai, Rai, Optical basicity and electronic polarizability of Sm3+-doped silica glass prepared by sol–gel process. Mat. Today Proce. 65, 2572–2577 (2022). https://doi.org/10.1016/j.matpr.2022.04.784

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Science and Technology New Delhi (India) for financial support (No. SR/S2/LOP-0039/2010).

Author information

Authors and Affiliations

Authors

Contributions

KMS Dawngliana: investigation, data curation, visualization, conceptualization, methodology, writing review, editing. Kamal Bhujel: investigation, data curation. S. Rai: investigation, visualization, review, data curation, editing, supervision.

Corresponding author

Correspondence to K. M. S. Dawngliana.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Consent for publication

The authors also declare the work is original and is not submitted or published anywhere.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawngliana, K.M.S., Bhujel, K. & Rai, S. Effect of ZnO nanoparticles on the Judd–Ofelt and radiative parameters of Sm3+ ions in sol–gel silica matrix. Appl. Phys. A 130, 268 (2024). https://doi.org/10.1007/s00339-024-07435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07435-5

Keywords

Navigation