Skip to main content
Log in

Arsenic sorption by modified clinoptilolite–heulandite rich tuffs

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Recent works show that modified natural zeolites improve the remotion of anionic or non-polar organic pollutants from water. In this work the arsenic sorption from aqueous solutions onto clinoptilolite–heulandite rich tuffs modified with lanthanum, hexadecyltrimethylammonium or iron was investigated considering the arsenic chemical species and the pH of the arsenic solutions. Clinoptilolite–heulandite rich tuffs were characterized by scanning electron microscopy and X-ray diffraction analysis. The elemental composition of the zeolitic samples was also determined. According to the Langmuir isotherm model the arsenic (V) sorption capacity of the zeolites was 75.4 μg As/g at pH 3, 3.9 μg As/g at pH 5 and 53.6 μg As/g at pH 6, for the lanthanum, HDTMA and iron modified clinoptilolite–heulandite rich tuff from Chihuahua (México), respectively. In general, the results suggested that the arsenic retention depends on the precedence of zeolitic material, the nature of arsenic chemical species, pH as well as the characteristics of modified natural zeolites. In this work the arsenic adsorption mechanisms are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wyatt, J., Fimbres, C., Romo, L., Méndez, R., Grijalva, M.: Incidence of heavy metals contamination in water supplies in northern México. Environ. Res. 76, 114–119 (1998).

    Article  CAS  Google Scholar 

  2. Del Razo, L.M., Corona, J.C., García, V.G., Albores, A., Cebrián, M.E.: Fluoride in well-water from a chronic arsenicism area of northern México. Environ. Pollut. 80, 91–94 (1993).

    Article  Google Scholar 

  3. Alarcón, M.T., Trejo, R., Flores, I., Romero P.: Contenido de flúor y arsénico en el agua de consumo humano del Valle del Guadiana. Memorias de la VII Semana de Investigación Científica, México (1996).

  4. Alvarado, S.L.F.: Cuantificación de arsénico y fluor en agua de consumo en localidades de seis estados de la República Mexicana con hidrofluorosis endémico. Bachelor Thesis, Universidad Autónoma de San Luis Potosí, México (2001).

  5. SSA. Norma Oficial Mexicana NOM-127-SSA1-1994, Modificación 2000. Salud ambiental, agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Diario Oficial de la Federación, 22 de noviembre de 2000.

  6. Berg, M., Hong-Con, T., Thi-Chuyen, N., Viet, P.H., Schertenleib, R., Giger, W.: Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat. Environ. Sci. Technol. 35, 2621–2626 (2001).

    Article  CAS  Google Scholar 

  7. Magalhaes, M.C.: Arsenic. An environmental problem limited by solubility. Pure Appl. Chem. 74, 1843–1850 (2002).

    CAS  Google Scholar 

  8. Byrnes, B.J., Ryan, R.L., Pazirandeh, M.: Comparison of Ion-Exchange resins and biosorbents for the removal of the heavy metals from plating factory wastewater. Environ. Sci. Technol. 31, 2910–2914 (1997).

    Article  Google Scholar 

  9. Vaca, M.M., López, C.R., Gehr, R., Jiménez, C.B., Alvarez, P.: Heavy metal removal with mexican clinoptilolite: Multi-component ionic exchange. Water Res. 35, 373–378 (2001).

    Article  Google Scholar 

  10. Pacheco, A.C.C., Torem, M.L.: Influence of anionic strength on the removal of As5+ by adsorbing colloid flotation. Sep. Sci. Technol. 37, 3599–3610 (2002).

    Article  CAS  Google Scholar 

  11. Davis, S.A., Misra, M.: Transport model for the adsorption of oxyanions of selenium (IV) and arsenic (V) from water onto lanthanum-and aluminum-based oxides. J. Colloid Interf. Sci. 188, 340–350 (1997).

    Article  CAS  Google Scholar 

  12. Jan, M., Park, J.K., Shin, E.W.: Lanthanum functionalized highly ordered mesoporous media: implications of arsenate removal. Microporous Mesoporous Mater. 75, 159–168 (2004).

    Article  Google Scholar 

  13. Li, Z., Bowman, R.S.: Retention of inorganic oxyanions by organo-kaolinite. Water Res. 35, 3771–3773 (2001).

    Article  CAS  Google Scholar 

  14. Lenoble, V., Bouras, O., Deluchat, V., Serpaud, B., Bollinger, J.: Arsenic adsorption onto pillared clays and iron oxides. J. Colloid Interf. Sci. 225, 52–58 (2002).

    Article  Google Scholar 

  15. Rau, I., Gonzalo, A., Valiente, M.: Arsenic(V) adsorption by immobilized iron mediation. Modeling of the adsorption process and influence of interfering anions. Reactive Funct. Polym. 54, 85–94 (2003).

    Article  CAS  Google Scholar 

  16. Zeng, L.A.: A method for preparing silica-containing iron (III) oxide adsorbents for arsenic removal. Water Res. 38, 275–287 (2003).

    Google Scholar 

  17. Kundu, S., Gupta, A.K.: Analysis and modeling of fixed bed column operations on As(V) removal by adsorption onto zero-valent iron. J. Colloid Interf. Sci. 290, 52–60 (2005).

    Article  CAS  Google Scholar 

  18. Bang, S., Korfiatis, G., Meng, X.: Removal of arsenic from water by zerovalent iron. J. Hazard. Mater. 121, 61–67 (2005).

    Article  CAS  Google Scholar 

  19. Ortiz, L.E.: Criterios y especificaciones concernientes a la exploración y valoración de minerales en la República Mexicana. Dirección de Recursos Minerales, Gerencia de Recursos Mineros (2001).

  20. Ostroumov, F.M., Ortiz, L.E., Corona, C.P.: Zeolitas de México diversidad mineralógica y aplicaciones. Sociedad Mexicana de Mineralogía (2003).

  21. Vujaković, A., Daković, A., Lemić, J., Radosavljević, A., Tomašević, M.: Adsorption of inorganic anionic contaminants on surfactant modified minerals. J. Serb. Chem. Soc. 68, 833–841 (2003).

    Article  Google Scholar 

  22. Arámbula-Villazana, V., Solache-Ríos, M., Olguín, M. T.: Sorption of cadmium from aqueous solution at different temperaturas by Mexican HEU-type zeolite rich tuff. J. Incl. Phenom. Macro. Chem. 55, 237–245 (2006).

    Article  Google Scholar 

  23. Obregón, P.A.: Métodos de análisis químicos de rocas y materiales similares. México (1973).

  24. Jiménez-Cedillo, M.J.: Caracterización de Minerales Zeolíticos Mexicanos, Bachelor Thesis, Universidad Autónoma del Estado de México, México (2005).

  25. Ming, D., Allen, E., Galindo, C., Henninger, D.: Methods for determining cation exchange capacities and compositions of native cations for clinoptilolite. Memories of the 3rd International Conference on the Occurrence, Properties, and Utilization of Natural Zeolites. In: Fuentes, G.R., Gonzalez, J. (eds.), Cuba (1995).

  26. Ming D.W., Dixon J.B.: Quantitative determination of clinoptilolite in solils by a cation-exchange capacity method. Clays Clay Miner. 35, 463–468 (1987).

    Article  CAS  Google Scholar 

  27. Slejko, F.L.: Adsorption Technology: A Step-step Approach to Process Evaluation and Application. Marcel-Decker Inc., USA (1985).

    Google Scholar 

  28. Breck, D.W.: Zeolite Molecular Sieves. John and Sons, New York (1974).

    Google Scholar 

  29. Bowman, R., Haggerty, G., Huddleston, R., Neel, D., Flynn, M.: Emerging Technologies, ASC Symposium Series 59, Chapter 5 (1995).

  30. Tsitsishvilli, G., Andronikashuili, T., Kirov, G., Filizova, L.: Natural Zeolites, Ed. Ellis Horwood Limited (1992).

  31. Díaz, M.C., Olguín, M.T., Solache, M., Alarcón, M.T., Aguilar, A.: Characterization and improvement of ion exchange capacities of Mexican clinoptololite-rich tuffs. J. Incl. Phenom. Macrocyclic Chem. 51, 231–240 (2005).

    Article  Google Scholar 

  32. Mumpton, F.A., Clayton, O.W.: Morphology of zeolites in sedimentary rocks by Scanning Electron Microscopy. Clays Clay Miner. 24, 1–23 (1976).

    Article  CAS  Google Scholar 

  33. Zarazua-Ortega G. Análisis elemental por fluoresencia de rayos-X, Reporte 003/07, Instituto Nacional de Investigaciones Nucleares (México), 2007.

  34. Macedo-Miranda, M.G.: Evaluación del proceso de sorción de la clinoptilolita natural Mexicana químicamente modificada para la remoción de arsénico presente en aguas contaminadas. Reporte de Tesis III, Instituto Tecnológico de Toluca, México (2006).

  35. De Marco M.J., SenGupta A.K., Greenleaf J.E.: Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Res. 37, 164–176 (2003).

    Article  Google Scholar 

  36. Tokunaga S., Wasay S.A., Park S.W.: Removal of arsenic (V) ion from aqueous solutions by lanthanum compounds. Water Sci. Technol. 35, 71–78 (1997).

    Article  CAS  Google Scholar 

  37. Xu Y., Nakajima T., Ohki A.: Adsorption and removal of arsenic (V) from drinking water by aluminum-loaded Shirasu-zeolite. J. Hazard. Mat. 92, 275–287 (2002).

    Article  CAS  Google Scholar 

  38. Bowman R., Applications of surfactant-modified zeolites to environmental remediation; Zeolite’026th Int. Conf., Greece, 2002.

  39. Haggerty, G.M., Bowman, R.S.: Sorption of chromate and other inorganic anions by organo-zeolite. Environ. Sci. Technol. 28, 452–458 (1994).

    Article  CAS  Google Scholar 

  40. Li, Z.: Sorption kinetics of hexadeltrimethylammonium on natural clinoptilolite. Langmuir 15, 6438–6445 (1999).

    Article  CAS  Google Scholar 

  41. Li, Z., Burt, T., Bowman, R.: Sorption of ionisable organic solutes by surfactant-modified zeolite. Environ. Sci. Technol. 34, 3756–3760 (2000).

    Article  CAS  Google Scholar 

  42. Sullivan, E.J., Hunter, D.B., Bowman, R.: Fourier transform Raman Spectroscopy of sorbed HDTAM and the mechanism of chromate sorption to surfactant-modified clinoptilolite. Environ. Sci. Technol. 32, 1948–1955 (1998).

    Article  CAS  Google Scholar 

  43. Manning, A.A., Fendorf, A.E., Goldberg, A.: Surfaces structure and stability of arsenic(III) on goethite: Spectroscopic evidence for inner-sphere complexes. Environ. Sci. Technol. 32, 2383–2388 (1998).

    Article  CAS  Google Scholar 

  44. Su, Ch., Puls, R.W.: Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environ. Sci. Technol. 35, 1487–1492 (2001).

    Article  CAS  Google Scholar 

  45. Dixit, S., Hering, J.: Comparison of arsenic (V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. 37, 4182–4189 (2003).

    Article  CAS  Google Scholar 

  46. Han, B., Runnells, T., Zimbrón, J., Wickramasinghe, R.: Arsenic removal from drinking water by flocculation and microfiltration. Desalination 145, 293–298 (2002).

    Article  CAS  Google Scholar 

  47. Elizalde, G.M.P., Mattusch, J., Einicke, W.D., Wennrich, R.: Sorption on natural solids for arsenic removal. Chem. Eng. J. 81, 187–195 (2001).

    Article  Google Scholar 

  48. Vaishya, R.Ch., Gupta, S.K.: Modeling arsenic (V) removal from water by sulfate modified iron-oxide-coated sand (SMIOCS). Sep. Sci. Technol. 39, 645–666 (2004).

    Article  CAS  Google Scholar 

  49. Shevade, S., Ford, R.G.: Use of synthetic zeolites for arsenate removal from pollutant water. Water Res. 38, 3197–3204 (2004).

    Article  CAS  Google Scholar 

  50. Bitton, G.: Formula Handbook for Environmental Engineers and Scientists, John Wiley and Sons, Inc., USA (1998).

    Google Scholar 

  51. Ho, Y.S., Wang, C.C.: Pseudo-isotherms for the sorption of cadmium ion onto tree fern. Process Biochem. 39, 759–763 (2004).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support provided by CONACYT (Project 46219) and are grateful to Dr. Thelma Pavon, Bachelor Leticia Carapia and Master Beatriz Barrientos for the laboratory analyses facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Olguín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macedo-Miranda, M.G., Olguín, M.T. Arsenic sorption by modified clinoptilolite–heulandite rich tuffs. J Incl Phenom Macrocycl Chem 59, 131–142 (2007). https://doi.org/10.1007/s10847-007-9306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9306-3

Keywords

Navigation