Skip to main content
Log in

Physicochemical characterization of drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the effectiveness of supercritical carbon dioxide (SC CO2) technique for preparing solid complexes between β-cyclodextrin and three local anesthetic agents (benzocaine, bupivacaine, and mepivacaine) by comparing it to more traditional methods such as kneading, co-evaporation, co-grinding, and sealed-heating. Effects of variation of experimental conditions, i.e. temperature, pressure and exposure time, on the products prepared by SC CO2 method were also examined. The products obtained were characterized by powder X-ray diffractometry and Fourier transform infrared spectroscopy, and tested for dissolution properties. Results suggested the possibility of complex formation between β-cyclodextrin and the three anesthetic agents, and indicated that it was influenced by the preparation technique. The co-grinding method was the only one resulting in completely amorphous products for all three drugs. Almost amorphous products, with only limited residual crystallinity, were obtained by co-evaporation and kneading techniques, while SC CO2 and sealed-heating methods gave rise to more crystalline systems. As for the SC CO2 method, temperature (for benzocaine and bupivacaine) or exposure time (for mepivacaine) had significant effects on the solid-state properties of the final products. Dissolution studies indicated that all the examined methods were more effective than the simple physical mixing in improving drug dissolution properties, but the different rank orders observed for the different drugs suggested that there is no general rule for the selection of the most effective preparation method, which depends on the type of drug-Cyd system considered. Nevertheless, in all cases, products obtained by the SC CO2 method showed satisfactory dissolution properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Covino, B., Vassallo, H.: Local Anesthetics. Grune and Stratton, New York (1976)

    Google Scholar 

  2. Benumof, J.: Clinical Procedures in Anesthesia and Intensive Care. JB Lippincott, Philadelphia (1992)

    Google Scholar 

  3. Szejtli, J.: Cyclodextrins in Pharmacy, Dordrecht. Kluwer, The Netherlands (1994)

    Google Scholar 

  4. Duchene, D., Wouessidjewe, D.: Pharmaceutical uses of cyclodextrins and derivatives. Drug Dev. Ind. Pharm. 16, 2487–2499 (1990)

    CAS  Google Scholar 

  5. Lee, B., Lee, J.: Enhancement of solubility and dissolution rate of poorly water-soluble naproxen by complexation with 2-hydroxypropyl-β-cyclodextrin. Arch. Pharm. Res. 18, 22–26 (1995)

    Article  CAS  Google Scholar 

  6. Dhanaraju, M., Kumaran, K., Baskaran, T., Moorthy, M.: Enhancement of bioavailability of griseofulvin by its complexation with beta-cyclodextrin. Drug Dev. Ind. Pharm. 24(6), 583–587 (1998)

    Article  CAS  Google Scholar 

  7. Dollo, G., Thompson, D., Le Corre, P., Chevanne, F., Le Verge, R.: Inclusion complexation of amide-typed local anesthetics with β-cyclodextrin and its derivatives. III. Biopharmaceutics of bupivacaine-SBE7-βCD complex following percutaneous sciatic nerve administration in rabbits. Int. J. Pharm. 164(1–2), 11–19 (1998)

    Article  CAS  Google Scholar 

  8. Greczy, J., Bruhwyler, J., Scuvee-Moreau, J., Seutin, V., Masset, H., Van Heugen J., Dresse, A., Lejeune, C., Decamp, E., Szente, L., Szejtli, J., Liegeois, J.: The inclusion of fluoxetine into gamma-cyclodextrin increases its bioavailability: behavioural, electrophysiological and pharmacokinetic studies. Psychopharmacology 151(4), 328–334 (2000)

    Article  Google Scholar 

  9. Nagarsenker, M., Meshram, R., Ramprakash, G.: Solid dispersion of hydroxypropyl beta-cyclodextrin and ketorolac: Enhancement of in-vitro dissolution rates, improvement in anti-inflammatory activity and reduction in ulcerogenicity in rats. J. Pharm. Pharmacol. 52, 949–956 (2000)

    Article  CAS  Google Scholar 

  10. Kang, J., Kumar, V., Yang, D., Chowdhury, P., Hohl, R.: Cyclodextrin complexation: influence on solubility, stability and cytotoxicity of camptothecin, an antineoplastic agent. Eur. J. Pharm. Sci. 15, 163–170 (2002)

    Article  CAS  Google Scholar 

  11. Stanley, T.: New routes of administration and new delivery systems of anesthetics. Anaesthesiolog 38, 665–668 (1988)

    Google Scholar 

  12. Szejtli, J.: Cyclodextrins and their Inclusion Complexes. Akademiai Kiado, Budapest (1982)

    Google Scholar 

  13. Jones, S. Grant, D., Hadgraft, J., Parr, G.: Cyclodextrins in the pharmaceutical sciences. Part I: Preparation, structure and properties of cyclodextrins and cyclodextrin inclusion compounds. Acta Pharm. Technol. 30, 213–223 (1984)

    CAS  Google Scholar 

  14. Irie, T., Uekama K.: Protection against the photosensitized skin irritancy of chlorpromazine by cyclodextrin complexation. J. Pharmacobiol. Dyn. 8(9), 788–791 (1985)

    CAS  Google Scholar 

  15. Mura, P., Faucci, M., Bettinetti, G.: The influence of polyvinylpyrrolidone on naproxen complexation with hydroxypropyl-β-cyclodextrin. Eur. J. Pharm. Sci. 13, 187–194 (2001)

    Article  CAS  Google Scholar 

  16. Cirri, M., Rangoni, C., Maestrelli, F., Corti, G., Mura, P.: Development of fast-dissolving tablets of flurbiprofen-cyclodextrin complexes. Drug Dev. Ind. Pharm. 31(7), 697–707 (2005)

    Article  CAS  Google Scholar 

  17. Mura, P., Furlanetto, S., Cirri, M., Maestrelli, F., Corti, G., pinzauti, S.: Interaction of naproxen with ionic cyclodextrins in aqueous solution and in the solid state. J. Pharm. Biomed. Anal. 37, 987–994 (2005)

    Article  CAS  Google Scholar 

  18. Veiga, M., Merino, M., Cirri, M., Maestrelli, F., Mura, P.: Comparative study on triclosan interactions in solution and in the solid state with natural and chemically modified cyclodextrins. J. Incl. Phenom. 53(1), 77–83 (2005)

    Article  CAS  Google Scholar 

  19. Hirayama, F., Uekama, K.: Cyclodextrins and their Industrial Uses. Editions de Santé, Paris (1987) pp. 133

    Google Scholar 

  20. Blanco, J., Vila-Jato, J.L., Otero, F., Anguiano, S.: Influence of the method of preparation on inclusion complexes of naproxen with different cyclodextrins. Drug Dev. Ind. Pharm. 17, 943–957 (1991)

    CAS  Google Scholar 

  21. Mura, P., Adragna E., Rabasco, A., Moyano, J., Perez-Martinez, J., Arias, M., Gines, J.: Effects of the host cavity size and the preparation method on the physicochemical properties of ibuproxam-cyclodextrin systems. Drug Dev. Ind. Pharm. 25, 279–287 (1999a)

    Article  CAS  Google Scholar 

  22. Mura, P., Faucci M.T., Manderioli A., Bramanti G.: Influence of the preparation method on the physicochemical properties of binary systems of econazole with cyclodextrins. Int. J. Pharm. 193, 85–95 (1999b)

    Article  CAS  Google Scholar 

  23. Mura, P., Faucci, M.T., Parrini, P.L., Furlanetto, S., Pinzauti, S.: Influence of the preparation method on the physicochemical properties of ketoprofen-cyclodextrin binary systems. Int. J. Pharm. 179, 117–128 (1999c)

    Article  CAS  Google Scholar 

  24. Kiran, E., Brennecke J.: Supercritical Fluid Engineering Science, ACS Symposium Series 514, American Chemical Society, Washington DC (1993)

    Google Scholar 

  25. Van Hees, T., Piel, G., Evrard, B., Otte, X., Thunus, L., Delattre, L.: Application of supercritical carbon dioxide for the preparation of a piroxicam-β-cyclodextrin inclusion compound. Pharm. Res. 16, 1864–1870 (1999)

    Article  Google Scholar 

  26. Junco, S. Casimiro T., Ribeiro, N., da Ponte, M.N., Cabral Marques, H.: A comparative study of naproxen-beta cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide. J. Incl. Phenom. 44(1–4), 117–121 (2002)

    Google Scholar 

  27. Charoenchaitrakool, M., Dehghani, F., Foster, R.F.: Utilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-β-cyclodextrin. Int. J. Pharm. 239(1–2), 103–112 (2002)

    Article  CAS  Google Scholar 

  28. Lai, S., Locci E., Piras, A., Porcedda, S., Lai, A., Marongiu B.: Imazalil-cyclomaltoheptaose (β-cyclodextrin) inclusion complex: Preparation by supercritical carbon dioxide and 13C CPMAS and 1H NMR characterization. Carbohydr. Res. 338(21), 2227–2232 (2003)

    Article  CAS  Google Scholar 

  29. Al-Marzouqi A., Shehatta, I., Jobe, B., Dowaidar, A.: Phase solubility and inclusion complex of itraconazole with β-cyclodextrin using supercritical carbon dioxide. J. Pharm. Sci. 95, 292–304 (2006)

    Article  CAS  Google Scholar 

  30. Shehatta, I., Al-Marzouqi, A., Jobe, B., Dowaidar, A.: Enhancement of aqueous solubility of itraconazole by complexation with cyclodextrins using supercritical carbon dioxide. Can. J. Chem. 83(10), 1833–1838 (2005)

    Article  CAS  Google Scholar 

  31. de Jong, R.H.: Local Anestethics. Springfield, Illinois (1994)

    Google Scholar 

  32. Strichartz, G.R., Sanchez, V., Arthue, R., Chafetz, R., Martin, D.: Fundamental properties of local anesthetics. II. Measured octanol:buffer partition coefficients and pK(a) values of clinically used drugs. Anest. Analg. 71(2), 158–170 (1990)

    Article  CAS  Google Scholar 

  33. Dollo, G., LeCorre, P., Chevanne, Le Verge, R.: Inclusion complexation of amide-typed local anaesthetics with ß-cyclodextrin and its derivatives. I. Physicochemical characterization. Int. J. Pharm. 131(2), 219–228 (1996)

    Article  CAS  Google Scholar 

  34. Pinto, L., Fraceto L., Santana, M., Pertinhez, T., Oyama Junior, S., de Paula, E.: Physico-chemical characterization of benzocaine-β-cyclodextrin inclusion complexes. J. Pharmaceut. Biomed. 39(5), 956–963 (2005)

    Article  CAS  Google Scholar 

  35. Hassan, A., Tang, Y., Ayres, J.: Itraconazole formation using supercritical carbon dioxide. Drug Dev. Ind. Pharm. 30(10), 1029–1035 (2004)

    Article  CAS  Google Scholar 

  36. Khan, K.A.: The concept of dissolution efficiency. J. Pharm. Pharmacol. 27(1), 48–49 (1975)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Al-Marzouqi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Marzouqi, A., Jobe, B., Corti, G. et al. Physicochemical characterization of drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J Incl Phenom Macrocycl Chem 57, 223–231 (2007). https://doi.org/10.1007/s10847-006-9192-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-006-9192-0

Keywords

Navigation