Skip to main content
Log in

A Simulation on the Complexation of Cyclodextrins with Phospholipid Headgroups

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The inclusion complexes of α-, β- and γ-cyclodextrin (CD) with three isolated phospholipid (PI – phosphatidylinositol; PS – phosphatidylserine; and PE – phosphatidylethanolamine) headgroups were studied using a flexible docking algorithm FDOCK based on molecular mechanics (CFF91 force filed). In the three phospholipid headgroups, PI headgroup exhibits the strongest affinity for CD, and the affinity of PS headgroup is greater than that of PE headgroup. By investigating the energy distribution and the complex structure in the inclusion procedure, it can be found that the van der Waals force is the main driving force responsible for the complexation. For the α-CD complex of PI headgroup, more than one inclusion complex should coexist due to the steric hindrance, which is reasonably consistent with the experimental results. Furthermore, analyses of the complex of PS and PE headgroup with α-CD also show that two or three possible complexes may appear in the inclusion process, and the complex structure with full inclusion is of the lowest energy and should be the most stable structure in the mixture. For β-␣and γ-CD, the energies of the most stable complexes structures for the three phospholipids headgroups were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szejtli J., (1998) Chem. Rev. 98:1743

    Article  PubMed  CAS  Google Scholar 

  2. Lipkowitz K.B., (1998) Chem. Rev. 98:1829

    Article  PubMed  CAS  Google Scholar 

  3. Uekama K., Hirayama F., Irie T., (1998) Chem. Rev. 98:2045

    Article  PubMed  CAS  Google Scholar 

  4. Mu T.W., Liu L., Li X.S., Guo Q.X., (2001) J. Phys. Org. Chem. 14:559

    Article  CAS  Google Scholar 

  5. Franchi P., Lucarini M., Mezzina E., Pedulli G.F., (2004) J. Am. Chem. Soc. 126:4343

    Article  PubMed  CAS  Google Scholar 

  6. Bea I., Jaime C., Kollman P., (2002) Theor. Chem. Acc. 108:286

    CAS  Google Scholar 

  7. Varady J., Wu X.W., Wang S.M., (2002) J. Phys. Chem. B 106:4863

    Article  CAS  Google Scholar 

  8. Choi Y., Jung S., (2004) Carbohydr. Res. 339:1961

    Article  PubMed  CAS  Google Scholar 

  9. Madrid J.M., Pozuelo J., Mendicuti F., Mattice W.L., (1997) J. Colloid Interf. Sci. 193:112

    Article  CAS  Google Scholar 

  10. Cervero M., Mendicuti F., (2000) J. Phys. Chem. B 104:1572

    Article  CAS  Google Scholar 

  11. Pastor I., Di Marino A., Mendicuti F., (2002) J. Phys. Chem. B 106:1995

    Article  CAS  Google Scholar 

  12. Madrid J.M., Villafruela M., Serrano R., Mendicuti F., (1999) J. Phys. Chem. B 103:4847

    Article  CAS  Google Scholar 

  13. Madrid J.M., Mendicuti F., Mattice W.L., (1998) J. Phys. Chem. B 102:2037

    Article  CAS  Google Scholar 

  14. Dodziuk H., Demchuk C.M., Bielejewska A., Kozminski W., Dolgonos G., (2004) Supramol. Chem. 16:287

    Article  CAS  Google Scholar 

  15. Dodziuk H., Lukin O., Nowinski K.S., (2000) J. Mol. Struct. (Theochem) 503:221

    Article  CAS  Google Scholar 

  16. Kim H., Jeong K., Lee S., Jung S., (2003) Bull. Korean Chem. Soc. 24:95

    Article  CAS  Google Scholar 

  17. Cai W.S., Xia B.Y., Shao X.G., Guo Q.X., Maigret B., Pan Z.X., (2001) Chem. Phys. Lett. 342:387

    Article  CAS  Google Scholar 

  18. Szejtli J., Cserhati T., Szogyi M., (1986) Carbohydr. Polym. 6:35

    Article  CAS  Google Scholar 

  19. Niu S.L., Litman B.J., (2002) Biophys. J. 83:3408

    PubMed  CAS  Google Scholar 

  20. Tanhuanpaa K., Somerharju P., (1999) J. Boil. Chem. 274:35359

    Article  CAS  Google Scholar 

  21. Tanhuanpaa K., Cheng K.H., Anttonen K., Virtanen J.A., Somerharju P., (2001) Biophys. J. 81:151

    Article  Google Scholar 

  22. Anderson T.G., Tan A., Ganz P., Seelig J., (2004) Biochemistry 43:2251

    Article  PubMed  CAS  Google Scholar 

  23. Ohtani Y., Irie T., Uekama K., Fukunaga K., Pitha J., (1989) Eur. J. Biochem. 186:17

    Article  PubMed  CAS  Google Scholar 

  24. Fauvelle F., Debouzy J.C., Nardin R., Gadelle A., (1994) Bioelectrochem. Bioenerg. 33:95

    Article  CAS  Google Scholar 

  25. Fauvelle F., Debouzy J.C., Crouzy S., Goschl M., Chapron Y., (1997) J. Pharm. Sci. 86:935

    Article  PubMed  CAS  Google Scholar 

  26. Debouzy J.C., Fauvelle F., Crouzy S., Girault L., Chapron Y., Goschl M., Gadelle A., (1998) J. Pharm. Sci. 87:59

    Article  PubMed  CAS  Google Scholar 

  27. Crouzy S., Fauvelle F., Debouzy J.C., Goschl M., Chapron Y., (1996) Carbohydr. Res. 287:21

    Article  CAS  Google Scholar 

  28. Cai W.S., Yao X.X., Shao X.G., Pan Z.X., (2005) J. Incl. Phenom. Macro. Chem. 51:41

    Article  CAS  Google Scholar 

  29. Cai W.S., Yu Y.Y., Shao X.G., (2005) J. Mol. Mod. 11:186

    Article  CAS  Google Scholar 

  30. Manor P.C., Saenger W., (1974) J. Am. Chem. Soc. 96:3630

    Article  CAS  Google Scholar 

  31. Betzel C., Saenger W., Hingerty B.E., Brown G.M., (1984) J. Am. Chem. Soc. 106:7545

    Article  CAS  Google Scholar 

  32. Harata K., (1987) Bull. Chem. Soc. Jpn. 60:2763

    Article  CAS  Google Scholar 

  33. Elder M., Hitchcock P., Mason R., Shipley G.G., (1977) Proc. R. Soc. Lond. A 354:157

    Article  CAS  Google Scholar 

  34. Rabinowitz I.N., Kraut J., (1964) Acta Cryst. 17:159

    Article  CAS  Google Scholar 

  35. Lomer T.R., Miller A., Beevers C.A., (1963) Acta Cryst. 16:264

    Article  CAS  Google Scholar 

  36. Accelrys Inc. (2005) Insight II 2005. Accelrys Software Inc., San Diego

    Google Scholar 

  37. Cai W.S., Shao X.G., (2002) J. Comput. Chem. 23:427

    Article  PubMed  CAS  Google Scholar 

  38. Xia B.Y., Cai W.S., Shao X.G., Guo Q.X., Maigret B., Pan Z.X., (2001) J. Mol. Struct. (TheoChem) 546:33

    Article  CAS  Google Scholar 

  39. Maple J.R., Dinur U., Hagler A.T., (1988) Proc. Natl. Acad. Sci. USA 85:5350

    Article  CAS  Google Scholar 

  40. Fraternali F., van Gunsteren W.F., (1996) J. Mol. Biol. 256:939

    Article  PubMed  CAS  Google Scholar 

  41. Hasel W., Hendrickson T.F., Still W.C., (1988) Tetrahedron Comp. Method. 1:103

    Article  CAS  Google Scholar 

  42. Goschl M., Crouzy S., Chapron Y., (1996) Eur. Biophys. J. 24:300

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (NNSFC, No. 20172048), the outstanding youth fund of NNFSC (No. 20325517), and the Teaching and Research Award Program for Outstanding Young Teachers (TRAPOYT) in Higher Education Institute, MOE, P.R.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, YM., Cai, W. & Shao, X. A Simulation on the Complexation of Cyclodextrins with Phospholipid Headgroups. J Incl Phenom Macrocycl Chem 56, 225–235 (2006). https://doi.org/10.1007/s10847-006-9088-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-006-9088-z

Keywords

Navigation