Skip to main content
Log in

Chiral recognition of aromatic compounds by β-cyclodextrin based on bimodal complexation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The chiral recognition of the selected aromatic chiral compounds by native β-cyclodextrin (β-CD) based on bimodal complexation was studied using a flexible docking algorithm FDOCK. A quantitative empirical free energy relationship model was employed to predict the complex stability constants and the preferred binding modes. The results showed that the calculated complex stability constants are in good agreement with the experimental data. Furthermore, the main force responsible for host-guest complexation is the van der Waals force and the chiral molecules are completely included into the β-CD cavity. The chiral recognition for the selected aromatic chiral compounds is the result of the van der Waals force counterbalancing with the other effects, such as the electrostatic interaction and the hydrophobic effect.

Figure The favorable structures for the inclusion complexes of (S)_phenylbutyric with β-CD. View in the plane normal to the Z-axis. β-CD is shown in surface and (S)_phenylbutyric in CPK representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Szejtli J (1998) Chem Rev 98:1743–1753

    Article  CAS  PubMed  Google Scholar 

  2. Rekharsky MV, Yamamura H, Kawai M, Inoue Y (2001) J Am Chem Soc 123:5360–5361

    Article  CAS  PubMed  Google Scholar 

  3. Rekharsky MV, Inoue Y (2000) J Am Chem Soc 122:4418–4435

    Article  CAS  Google Scholar 

  4. Rekharsky MV, Inoue Y (2002) J Am Chem Soc 124:813–826

    Article  CAS  PubMed  Google Scholar 

  5. Alexander JM, Clark JL, Brett TJ, Stezowski JJ (2002) Proc Natl Acad Sci USA 99:5115–5120

    Article  CAS  PubMed  Google Scholar 

  6. Lai XH, Ng SC (2004) J Chromatogr A 1031:135–142

    Article  CAS  PubMed  Google Scholar 

  7. Lee S, Yi DH, Jung S (2004) B Kor Chem Soc 25:216–220

    CAS  Google Scholar 

  8. Liu Y, Chen Y, Li L, Li B, Zhang HY (2002) Supramol Chem 14:299–307

    Google Scholar 

  9. Lipkowitz KB (1998) Chem Rev 98:1829–1873

    Article  CAS  PubMed  Google Scholar 

  10. Sun M, Liu XH, Yan LS, Luo GA (2003) J Mol Model 9:419–422

    Article  CAS  Google Scholar 

  11. Lipkowitz KB, Coner R, Peterson MA, Morreale A, Shackelford J (1998) J Org Chem 63:732–745

    Article  CAS  PubMed  Google Scholar 

  12. Dodziuk H, Ejchart A, Lukin O, Vysotsky MO (1999) J Org Chem 64:1503–1507

    Article  CAS  PubMed  Google Scholar 

  13. Lipkowitz KB, Pearl G, Coner B, Peterson MA (1997) J Am Chem Soc 119:600–610

    Article  CAS  Google Scholar 

  14. Hayes JM, Stein M, Weiser J (2004) J Phys Chem A 108:3572–3580

    Article  CAS  Google Scholar 

  15. Xia BY, Cai WS, Shao XG, Guo QX, Maigret B, Pan ZX (2001) J Mol Struc (Theochem) 546:33–38

    Article  CAS  Google Scholar 

  16. Cai WS, Yao XX, Shao XG, Pan ZX (2004) J Incl Phenom Macro (in press)

  17. Betzel C, Saenger W, Hingerty BE, Brown GM (1984) J Am Chem Soc 106:7545–7557

    Article  CAS  Google Scholar 

  18. Cai WS, Shao XG (2002) J Comput Chem 23:427–435

    Article  CAS  PubMed  Google Scholar 

  19. Liu DC, Nocedal J (1989) J Math Prog B 45:503–528

    Article  Google Scholar 

  20. Maple JR, Dinur U, Hagler AT (1988) Proc Natl Acad Sci USA 85:5350–5354

    CAS  Google Scholar 

  21. Fraternali F, van Gunsteren WF (1996) J Mol Biol 256:939–948

    Article  CAS  PubMed  Google Scholar 

  22. Hasel W, Hendrickson TF, Still WC (1988) Tetrahedron Comput Methodol 1:103–116

    Article  CAS  Google Scholar 

  23. Liu L, Guo QX (1999) J Phys Chem B 103:3461–3467

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the Natural Science Foundation of China (No. 20172048) and the Teaching and Research Award Program for Outstanding Young Professors (TRAPOYP) in Higher Education Institute, MOE, P.R.C. The construction and optimization of the structures used in this study by Insight II were completed in the laboratory of UMR 7565 CNRS/UHP, Université H. Poincaré, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, W., Yu, Y. & Shao, X. Chiral recognition of aromatic compounds by β-cyclodextrin based on bimodal complexation. J Mol Model 11, 186–193 (2005). https://doi.org/10.1007/s00894-004-0233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-004-0233-6

Keywords

Navigation