Skip to main content
Log in

Spironolactone and its Complexes with β-cyclodextrin: Modern NMR Characterization and Structural DFTB-SCC Calculations

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

In the present work, inclusion complexes of spironolactone (SP) with β-cyclodextrin (β-CD) in solid phase and aqueous solution were studied by solubility methods, NMR spectroscopy and thermal analysis. The results showed different kinds of complexations when freeze-drying and kneading methods were used. The freeze-drying product (1:1, SP:β-CD) showed lower degree of complexation and stability than the (1:2, SP:β-CD) compound obtained by kneading method. The spironolactone molecule was also studied by NMR spectroscopy at 400 MHz. The chemical shifts of all spironolactone atoms and their inclusion compounds were assigned. Extensive use of 1D and 2D NMR techniques, including ROESY experiment, allowed verifying the position of the spironolactone molecule inside the cyclodextrin cavity in both situations. In addition, DFTB-SCC quantum mechanical calculations of the inclusion compounds were performed. The predicted structural properties are in good agreement with ROESY NMR results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

β-CD:

β-cyclodextrin

COSY:

Correlation Spectroscopy

DEPT:

Distortionless Enhancement by Polarization Transfer

DFTB-SCC:

Density Functional-Tight Binding- Self-Consistent Charge

HMBC:

Heteronuclear Multiple Bond Correlation

HSQC:

Heteronuclear Single Quantum Coherence

NMR:

Nuclear Magnetic Resonance

ROESY:

Rotating Frame Overhauser Enhancement Spectroscopy

S-Ac:

Thio-acetyl group

SP:

Spironolactone

References

  1. Bradley C., (2000). Intens. Crit. Care Nursing 16:403

    Article  CAS  Google Scholar 

  2. Yusuff N., York P., (1991). Int. J. Pharmaceutics 73: 9

    Article  CAS  Google Scholar 

  3. Kaukonen A.M., kilpeläinen I., Mannermaa JP., (1997). Int. J. Pharmaceutics 159: 159

    Article  CAS  Google Scholar 

  4. Uekama K., Hirayama F., Irie T., (1998). Chem. Rev. 98: 2045

    Article  CAS  Google Scholar 

  5. Jarho P., Stella V., Velde D.V., (2000) J. Pharm. Sci. 89 (2) 241

    Article  CAS  Google Scholar 

  6. Pramar Y., Gupta V.D., (1991). J. Pharm. Sci. 80 (6) 551

    Article  CAS  Google Scholar 

  7. Wouessidjewe D., Crassous A., Duchêne D., (1989). Carbohydrate Res. 192: 313

    Article  CAS  Google Scholar 

  8. Highet R.J., Burke T.R., Trager W.F., Pohl L.R., Menard R.H., Taburet A.M., Gillete J.R., (1980). Steroids 35 (2) 119

    Article  CAS  Google Scholar 

  9. Reich H.J., Jautelat M., Messe M.T., Weigert F.J., (1969). J. A. Chem. Soc. 91(26): 7445

    Article  CAS  Google Scholar 

  10. A.E. Derome: Modern NMR Techniques for Chemistry Research, Pergamon Press, UK (1987), 280 p

  11. T.D.W. Claridge: High-Resolution NMR Techniques in Organic Chemistry – Tetrahedron Organic Chemistry Series, Vol. 19, Pergamon Press, UK, (1999), 382pp

  12. Higuchi T., Connors K.A., (1965). Adv. Anal. Chem. Instrum. 4: 117

    CAS  Google Scholar 

  13. Uekama K., Horiuchi Y., Kikuchi M., Hirayama F., Ijitsu T., Ueno M., (1988). J.Incl. Phenom. 6: 167

    Article  CAS  Google Scholar 

  14. Rappe A.K., Casewit C.J., Colwell K.S., Goddard III, W.A., Skiff W.M., 1992. J. Am. Chem. Soc. 114: 10024

    Article  CAS  Google Scholar 

  15. Seifert G., Porezag D., Frauenheim T., 1996. Int. J. Quantum Chem. 58: 185

    Article  CAS  Google Scholar 

  16. Porezag D., Frauenheim T., Köhler T., Seifert G., Kaschner R., 1995. Phys. Rev. B 51: 12947

    Article  CAS  Google Scholar 

  17. Elstner M., Porezag D., Jungnickel G., Elsner J., Haugk M., Frauenheim T., Suhai S., Seifert G., 1998. Phys. Rev. B 58: 7260

    Article  CAS  Google Scholar 

  18. L. Zhechkov, T. Heine, S. Patchkovskii, G. Seifert, and H.A. Duarte: J. Chem. Theory Comput. 1, 841 (2005)

  19. R.G. Par and W. Yang: 1989. Density-Functional Theory of Atoms and Molecules, Ed. Oxford Science Publications

  20. Perdew J.P., Burke T., Ernzerhof M., (1996). Phys. Rev. Lett. 77 (18) 3865

    Article  CAS  Google Scholar 

  21. Albertazzi E., Domene C., Fowler P.W., Heine T., Seifert G., Van Alsenoy C., Zerbetto F., (1999). Phys. Chem. Chem. Phys. 1: 2913

    Article  CAS  Google Scholar 

  22. Porezag D., Jungnickel G., Frauenheim T., Seifert G., Ayuela A., Pederson M.R., (1997). Appl. Phys. A 64: 321

    Article  CAS  Google Scholar 

  23. A.M. Köster, R. Flores, G. Geudtner, A. Goursot, T. Heine, S. Patchkovskii, J.U. Reveles, A. Vela and D.R. Salahub, deMon 2003. NRC Ottawa, Canada

Download references

Acknowledgements

The authors would like to thank CNPq, CNPq-FAPEMIG-PRONEX for the financial support to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén D. Sinisterra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lula, I., Gomes, M.F., Piló-Veloso, D. et al. Spironolactone and its Complexes with β-cyclodextrin: Modern NMR Characterization and Structural DFTB-SCC Calculations. J Incl Phenom Macrocycl Chem 56, 293–302 (2006). https://doi.org/10.1007/s10847-005-9030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-005-9030-9

Keywords

Navigation