Skip to main content
Log in

Competition between the Hydrated Fluoride Anion and Hexanoic Acid for Inclusion in β-Cyclodextrin: An 1H-NMR Study in Aqueous Solution

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

β-cyclodextrin (βCD) and two guests (hexanoic acid and the hydrated fluoride ion) are considered as a system in the NMR chemical shift fast exchange regime. The measured chemical shift variations for the βCD H5 protons are expressed as functions of the mole fractions for the free and complexed states, and their slopes, \(\Delta \delta^{0}_{i} = (\partial \Delta\delta/\partial x_{i})_{xj(j\neq i)}\), are evaluated. When the NaF concentration is varied ([NaF]0/mM = {50,100, 150, 200, 250}) for a defined value of the hexanoic acid concentration ([Hex]0/mM = {5, 7.5, 10, 12.5, 15}), the chemical shift variations of the βCD H5 protons for 2.5 mM βCD solutions in D2O present a second order polynomial variation with a minimum, suggesting two opposing trends. The first trend corresponding to the decrease of Δδ values (relative shielding) is traced to increasingly negative values of \(\Delta \delta^{0}_{\beta{\rm CD} \cdot {\rm Hex\_F^{-}}}\). Corresponding to the increase of Δδ values (relative deshielding), the second trend is mainly associated with the increase of the mole fraction for the inclusion complex βCD·F(H2O) 6 , as the concentration of NaF increases. The kosmotropic, stabilizing features of the fluoride ion are consistent with the results of HF/6–31G* single point energy calculations showing that βCD·F(H2O) 6 is energetically favourable, in contrast with βCD·Cl(H2O) 6 and βCD·Br(H2O) 8 . Due to its smaller size, F(H2O) 6 is not appreciably distorted inside the βCD cavity as compared with Cl(H2O) 6 and Br(H2O) 8 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) F. Hofmeister: Arch. Exp. Pathol. Pharmakol. 24, 247 (1888); (b) P.H. Hippel and T. Schleich: Acc. Chem. Res. 2, 257 (1969); (c) R.L. Baldwin: Biophys. J. 71, 2056 (1996); (d) M.G. Cacace, E.M. Landau, and J.J. Ramsden: Quart. Rev. Biophys. 30, 241 (1997)

  2. (a) W.R. Saenger: Angew. Chem. Int. Ed. Engl. 19, 344 (1980); (b) W.R. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe, K. Koizumi, S.M. Smith, and T. Takaha: Chem. Rev. 98, 1787 (1998)

  3. (a) P. Lo Nostro, J.R. Lopes, B.W. Ninham, and P. Baglioni: J. Phys. Chem. B 106, 2166 (2002); (b) N. Funasaki, S. Ishikawa, and S. Neya: J. Phys. Chem. B 107, 10094 (2003)

  4. (a) C. Betzel, W. Saenger, B.E. Hingerty, and G.M. J. Brown: Am. Chem. Soc. 106, 7545 (1984); (b) T. Steiner, W. Saenger, and R.E. Lechner: Molec. Phys. 72, 1211 (1991); (c) T. Steiner and G. Koellner: J. Am. Chem. Soc. 116, 5122 (1994)

  5. (a) Q.X. Guo, Z.Z. Li, T. Ren, X.Q. Zhu, and Y.C.J. Liu: Inclusion Phenom. Mol. Recog. Chem. 17, 149 (1994); (b) H.-J. Schneider, F. Hacket, and V. Rüdiger: Chem. Rev. 98, 1755 (1998); (c) L.D. Wilson and R.E. Verrall: Can. J. Chem. 76, 25 (1998)

  6. S. Lima B.J. Goodfellow J.J.C. Teixeira-Dias (2003) J. Phys. Chem. B 107 14590–14597 Occurrence Handle1:CAS:528:DC%2BD3sXpt1Wqtbk%3D

    CAS  Google Scholar 

  7. S. Lima, B.J. Goodfellow, and J.J.C. Teixeira-Dias: J. Phys. Chem. B (2004) (in press)

  8. American Association: J. Am. Diet. Assoc. 100, 1208 (2000)

    Google Scholar 

  9. Y. Matsui M. Ono S. Tokunaga (1997) Bull. Chem. Soc. Jpn 70 535–541 Occurrence Handle1:CAS:528:DyaK2sXhvF2jtL0%3D

    CAS  Google Scholar 

  10. M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, and A. Pople: Gaussian 94, Revision E.2, Gaussian Inc., Pittsburgh, PA (1995)

  11. H. Gunther (1995) NMR Spectroscopy EditionNumber2 John Wiley & Sons Chichester 339–341

    Google Scholar 

  12. (a) A.M. Moreira da Silva, J. Empis, and J.J.C. Teixeira-Dias: J. Incl. Phenom. Macro. 33, 81 (1999); (b) L. Fielding: Tetrahedron 56, 6151 (2000)

  13. (a) P.W. Hochachka and G.N. Somero: Biochemical Adaptation. Princeton University Press, Princeton, NJ (1984); (b) D.L. Hall and P.L. Darke: J. Biol. Chem. 270, 22697 (1995); (c) P. Terpstra, D. Combes, and A. Zwick: J. Chem. Phys. 92, 65 (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José J. C. Teixeira-dias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, S., Goodfellow, B.J. & Teixeira-dias, J.J.C. Competition between the Hydrated Fluoride Anion and Hexanoic Acid for Inclusion in β-Cyclodextrin: An 1H-NMR Study in Aqueous Solution. J Incl Phenom Macrocycl Chem 54, 35–40 (2006). https://doi.org/10.1007/s10847-005-3489-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-005-3489-2

Key words

Navigation