Skip to main content
Log in

Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

For the problem of dynamic contact force tracking control under physical human-robot interaction (pHRI), we propose a dual closed-loop adaptive decentralized control framework. The dynamic model of modular robot manipulator (MRM) subsystem is established based on joint torque feedback (JTF) technology. On the basis of fully analyzing the model uncertainty, the method based on decomposition is used to dynamically compensate the model uncertainty. Using Lyapunov theory, the uniform and ultimate boundedness (UUB) of dynamic contact force tracking error and MRM position tracking error in pHRI process are confirmed. A neural network (NN) observer is designed to dynamically compensate the uncertainty of controller. Finally, the effectiveness of this method is verified by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

References

  1. Haddadin, S., Croft, E.: Physical human-robot interaction. Springer handbook of robotics. Springer, Cham (2016)

    Book  Google Scholar 

  2. Wallén, J.: The history of the industrial robot. Linköping University Electronic Press. (2008)

  3. Zhou, F., Dong, B., Li, Y.: Torque sensorless decentralized position/force control for constrained reconfigurable manipulator via non-fragile H\(\infty \) dynamic output feedback. J. Electr. Eng. Technol. 13(1), 418–429 (2018)

    Google Scholar 

  4. Dong, B., Liu, K.P., Li, Y.C.: Decentralized control of harmonic drive based modular robot manipulator using only position measurements: theory and experimental verification. J. Intell. Robot. Syst. 88, 3–18 (2017)

    Article  Google Scholar 

  5. Tremblay,T., Padir, T.: Modular robot arm design for physical human-robot interaction, 2013 IEEE International Conference on Systems, Man, and Cybernetics, IEEE: 4482–4487(2013)

  6. Tran, H.T., Tan, L.N., Han, S.H.: Model-learning-based partitioned control of a human-powered augmentation lower exoskeleton. J. Electr. Eng. Technol. 17(1), 533–550 (2022)

    Article  Google Scholar 

  7. Li, H.Y., Dharmawan, A.G., Paranawithana, I.: A control scheme for physical human-robot interaction coupled with an environment of unknown stiffness. J. Intell. Robot. Syst. 100, 165–182 (2020)

    Article  Google Scholar 

  8. An, T.J., Wang, Y.X., Liu, G.J., Li, Y.C., Dong, B.: Cooperative game-based approximate optimal control of modular robot manipulators for human-robot collaboration. IEEE Trans. Cybernet. 53(7), 4691–4703 (2023)

    Article  Google Scholar 

  9. Sarac,M., Koyas E., Erdogan, A.: Brain computer interface based robotic rehabilitation with online modification of task speed. 2013 IEEE 13th International Conference on Rehabilitation Robotics, IEEE: 1–7 (2013)

  10. Pehlivan, A.U., Losey, D.P., O’Malley, M.K.: Minimal assist-as-needed controller for upper limb robotic rehabilitation. IEEE Trans. Robot. 32(1), 113–124 (2015)

    Article  Google Scholar 

  11. Cacace, J., Finzi, A., Lippiello, V.: Enhancing shared control via contact force classification in human-robot cooperative task execution. in Human friendly robotics, Cham: 167–179 (2019)

  12. Müller, F., Janetzky, J., Behrnd, U., Akel, J., Thomas, U.: User force-dependent variable impedance control in human-robot interaction, 2018 IEEE 14th International Conference on Automation Science and Engineering, IEEE: 1328–1335 (2018)

  13. Duchaine, V., Gosselin, C.: Stable and intuitive control for physical human-robot interaction, 2009 IEEE International Conference on Robotics and Automation, IEEE: 3383–3388 (2009)

  14. Bae, J., Kim, K., Huh, J., Hong, D.: Variable admittance control with virtual stiffness guidance for human-robot collaboration. IEEE Access. 8, 117335–46 (2020)

    Article  Google Scholar 

  15. Hogan, N.: Impedance control: An approach to manipulation: Part II-Implementation. (1985)

  16. Anderson, R.J., Spong, M.W.: Hybrid impedance control of robotic manipulators. IEEE J Robot Autom. 4(5), 549–556 (1988)

    Article  Google Scholar 

  17. Ikeura, R., Inooka, H.: Variable impedance control of a robot for cooperation with a human. Proceedings of 1995 IEEE International Conference on Robotics and Automation, IEEE, 3: 3097–3102 (1995)

  18. Seraji, H., Colbaugh, R.: Force tracking in impedance control. Int. J. Robot. Res. 16(1), 97–117 (1997)

    Article  Google Scholar 

  19. Love, L.J.: Book W.J.: Environment estimation for enhanced impedance control. Proceedings of 1995 IEEE International Conference on Robotics and Automation, IEEE, 2: 1854–1859 (1995)

  20. Hogan,N.: Stable execution of contact tasks using impedance control. Proceedings of 1987 IEEE International Conference on Robotics and Automation, IEEE, 4: 1047–1054 (1987)

  21. Ott, C.: A, Albu-Schaffer, A, Kugi, On the passivity-based impedance control of flexible joint robots. IEEE Transactions on Robotics 24(2), 416–429 (2008)

    Article  Google Scholar 

  22. Buchli, J., Theodorou, E., Stulp, F.: Variable impedance control a reinforcement learning approach. Robotics: Science and Systems VI, 153 (2011)

  23. Toru, T., Yokogawa, R., Hara, K.: Variable impedance control based on estimation of human arm stiffness for human-robot cooperative calligraphic task. Proceedings 2002 IEEE International Conference on Robotics and Automation, IEEE: 644–650 (2002)

  24. Braun, D., Howard, M., Vijayakumar, S.: Optimal variable stiffness control: formulation and application to explosive movement tasks. Auton. Robots. 33(3), 237–253 (2012)

    Article  Google Scholar 

  25. Kronander, K., Billard, A.: Online learning of varying stiffness through physical human-robot interaction. 2012 IEEE International Conference on Robotics and Automation, IEEE: 1842–1849 (2012)

  26. Kronander, K., Billard, A.: Stability considerations for variable impedance control. IEEE Trans. Robotics. 32(5), 1298–1305 (2016)

    Article  Google Scholar 

  27. Calinon, S., Sardellitti, I., Caldwell, D.G.: Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE: 249–254 (2010)

  28. Buchli, J., Stulp, F., Theodorou, E.: Learning variable impedance control. Int. J. Robotics Res. 30(7), 820–833 (2011)

    Article  Google Scholar 

  29. An, T., Zhu, X., Zhu, M., Ma, B., Dong, B.: Fuzzy logic nonzero-sum game-based distributed approximated optimal control of modular robot manipulators with human-robot collaboration. Neurocomputing 543(6), 126276 (2023)

    Article  Google Scholar 

  30. Science and Systems VIII: N. Roy, P. Newman, S. Srinivasa. Tendon-driven variable impedance control using reinforcement learning. Robotics. IEEE 8, 369–376 (2013)

    Google Scholar 

  31. Xue, J., Wang, S., Wang, J.: Stewart-inspired vibration isolation control for a wheel-legged robot via variable target force impedance control. J. Intell. Robot. Syst. 106(3), 1–21 (2022)

    Article  Google Scholar 

  32. Li, Y.N., Eden, J., Carboni, G., Burdet, E.: Improving tracking through human-robot sensory augmentation. IEEE Robot. Autom. Lett. 5(3), 4399–4406 (2020)

    Article  Google Scholar 

  33. Li, Y.A., Ge, S.S.: Force Tracking control for motion synchronization in human-robot collaboration. Robotica. 34(6), 1260–1281 (2016)

    Article  Google Scholar 

  34. Li, Y.N., Ge, S.S.: Human robot collaboration based on motion intention estimation. IEEE-ASME Transactions on Mechatronics. 19(3), 1007–1014 (2014)

    Article  Google Scholar 

  35. Liu, G.: Decomposition-based friction compensation of mechanical systems. Mechatronics. 12(5), 755–769 (2002)

  36. Duan, J., Gan, Y., Chen, M.: Adaptive variable impedance control for dynamic contact force tracking in uncertain environment. Robot. Auton. Syst. 102, 54–65 (2018)

  37. Dong, J., Xu, J., Zhou, Q.: Physical human-robot interaction force control method based on adaptive variable impedance. J. Franklin Inst. 357(12), 7864–7878 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant no. 62173047), the Scientific Technological Development Plan Project in Jilin Province of China (Grant no. 20220201038GX) and the Science and Technology project of Jilin Provincial Education Department of China during the 13th Five-Year Plan Period (Grant no. JJKH20220689KJ).

Author information

Authors and Affiliations

Authors

Contributions

Tianjiao An: Software. Bo Dong: Writing-original draft. Yusheng Jing: Supervision. Xinye Zhu: Conceptualization, Methodology. Yiming Cui: Data curation.

Corresponding author

Correspondence to Tianjiao An.

Ethics declarations

Conflict of Interest Statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, B., Jing, Y., Zhu, X. et al. Adaptive Impedance Decentralized Control of Modular Robot Manipulators for Physical Human-robot Interaction. J Intell Robot Syst 109, 48 (2023). https://doi.org/10.1007/s10846-023-01978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01978-0

Keywords

Navigation