Skip to main content
Log in

Design of a Reference Governor in a Zonotopic Framework Applied to a Quadrotor under Feedback Linearization Control Strategies

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This work investigates the combination of different feedback linearization strategies with a reference governor scheme, i.e., a specific control scheme that enables the handling of constraint and limit protection, developed in a zonotopic framework. The zonotopic representation of the safe flight envelope is simple and computationally efficient for real-time implementation. The global scheme consisting of feedback linearization and reference governor ensures safe flight under disturbances and constraints, as illustrated with numerical tests using the Parrot Mambo simulator provided in the Mathworks Simulink environment. Discussions of trajectory tracking, input constraints and robustness to modeling uncertainties are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code or data availability

The data sets presented in the article are available from the first author on request

References

  1. Qiao, J., Liu, Z., Zhang, Y.: Gain scheduling pid control of the quad-rotor helicopter. In 2017 IEEE International Conference on Unmanned Systems (ICUS), pp. 1594–1601 (2017)

  2. Tripathi, V.K., Behera, L., Verma, N.: Design of sliding mode and backstepping controllers for a quadcopter. In 2015 39th National Systems Conference (NSC), pp. 1–6 (2015)

  3. Voos, H.: Nonlinear control of a quadrotor micro-uav using feedback-linearization. In 2009 IEEE International Conference on Mechatronics, pp. 1–6 (2009)

  4. Merabti, H., Bouchachi, I., Belarbi, K.: Nonlinear model predictive control of quadcopter. In 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp. 208–211 (2015)

  5. Ramírez-Mendoza, A.M.E., Covarrubias-Fabela, J.R., Amezquita-Brooks, L.A., García-Salazar, O., Yu, W.: Fuzzy adaptive neurons applied to the identification of parameters and trajectory tracking control of a multi-rotor unmanned aerial vehicle based on experimental aerodynamic data (2020)

  6. Slotine, J.-J.E., Li, W.: Applied nonlinear control (1991)

  7. Smeur, E.J.J., Chu, Q., de Croon, G.C.H.E.: Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles. J. Guid. Control Dyn. 39(3), 450–461 (2016)

    Article  Google Scholar 

  8. van ’t Veld, R., Van Kampen, E.-J., Chu, Q.P.: Stability and robustness analysis and improvements for incremental nonlinear dynamic inversion control. In 2018 AIAA Guidance, Navigation, and Control Conference. American Institute of Aeronautics and Astronautics, January (2018)

  9. Yavrucuk, I., Prasad, J.V.R., Unnikrishnan, S.: Envelope protection for autonomous unmanned aerial vehicles. Journal of Guidance, Control, and Dynamics 32(1), 248–261 (2009)

    Article  Google Scholar 

  10. Yasin, J.N., Mohamed, S.A.S., Haghbayan, M.-H., Heikkonen, J., Tenhunen, H., Plosila, J.: Unmanned aerial vehicles (uavs): Collision avoidance systems and approaches. IEEE Access 8, 105139–105155 (2020)

    Article  Google Scholar 

  11. Huang, S., Teo, R.S.H., Tan, K.K.: Collision avoidance of multi unmanned aerial vehicles: A review. Annu. Rev. Control 48, 147–164 (2019)

    Article  MathSciNet  Google Scholar 

  12. Nicotra, M.M., Naldi, R., Garone, E.: A robust explicit reference governor for constrained control of unmanned aerial vehicles. In 2016 American Control Conference (ACC), pp. 6284–6289 (2016)

  13. Sun, S., de Visser, C.C.: Quadrotor Safe Flight Envelope Prediction in the High-Speed Regime: A Monte-Carlo Approach

  14. Althoff, M., Kochdumper, N., Wetzlinger, M.: CORA 2020 Manual. Technische Universität München, 87548 Garching, Germany (2020)

  15. Girard, A., Le Guernic, C., Maler, O.: Efficient computation of reachable sets of linear time-invariant systems with inputs. k. In: Hespanha, J.P., Tiwari, A. (eds.) Hybrid Systems: Computation and Control, pp. 257–271. Heidelberg, Springer, Berlin Heidelberg, Berlin (2006)

    Google Scholar 

  16. Scott, J.K., Raimondo, D.M., Marseglia, G.R., Braatz, R.D.: Constrained zonotopes: A new tool for set-based estimation and fault detection. Automatica 69, 126–136 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Delansnay, G., Wouwer, A.V.: Implementation and tests of an indi control strategy applied to the parrot mambo minidrone. In 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 745–752. IEEE (2022)

  18. Pounds, P.E.I., Mahony, R.E., Hynes, P., Roberts J.M.: Design of a four-rotor aerial robot (2002)

  19. Prouty, R.W.: Helicopter Performance, Stability, and Control. PWS Engineering, Boston (1986)

    Google Scholar 

  20. Conlisk, A.T.: Modern helicopter rotor aerodynamics. Prog. Aerosp. Sci. 37(5), 419–476 (2001)

    Article  Google Scholar 

  21. Guenard, N., Hamel, T., Moreau, V.: Dynamic modeling and intuitive control strategy for an “x4-flyer”. In 2005 International Conference on Control and Automation, vol. 1, pp. 141–146 (2005)

  22. Heard, W.B.: Rigid Body Mechanics: Mathematics. Wiley, Physics and Applications. Physics textbook (2008)

    Google Scholar 

  23. Lotufo, M.A., Colangelo, L., Novara, C.: Control design for uav quadrotors via embedded model control. IEEE Trans. Control Syst. Technol. 28(5), 1741–1756 (2020)

    Article  Google Scholar 

  24. Sieberling, S., Chu, Q.P., Mulder, J.A.: Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction. J. Guid. Control. Dyn. 33(6), 1732–1742 (2010)

  25. Steffensen, R., Steinert, A., Mbikayi, Z., Raab, S., Angelov, J., Holzapfel, F.: Filter and sensor delay synchronization in incremental flight control laws. Aerospace Systems, pp. 1–20 (2023)

  26. Garone, E., Di Cairano, S., Kolmanovsky, I.: Reference and command governors for systems with constraints: A survey on theory and applications. Automatica 75, 306–328 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Althoff, M.: Reachability Analysis and Its Application to the Safety Assessment of Autonomous Cars. PhD thesis, Lehrstuhl für Steuerungs- und Regelungstechnik, Technische Universität Müunchen, Germany (2010)

  28. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation and Control, pp. 291–305. Heidelberg, Springer, Berlin Heidelberg, Berlin (2005)

  29. Althoff, M., Frehse, G., Girard, A.: Set Propagation Techniques for Reachability Analysis. Annual Review of Control, Robotics, and Autonomous Systems 4(1) (2021)

  30. Raghuraman, V., Koeln, J.P.: Set operations and order reductions for constrained zonotopes. Automatica 139, 110204 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Riether, F.: Agile quadrotor maneuvering using tensor-decomposition-based globally optimal control and onboard visual-inertial estimation. University of Stuttgart (2013)

  32. Yang, X., Scott, J.K.: A comparison of zonotope order reduction techniques. Automatica 95, 378–384 (2018)

Download references

Funding

This research received no specific funding

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the conceptualization, methodology and investigation. The software implementation, data collection and analysis were performed by the first author. Both authors prepared the first draft of the manuscript

Corresponding authors

Correspondence to Gilles Delansnay or Alain Vande Wouwer.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflicts of interest

The authors declare no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delansnay, G., Wouwer, A.V. Design of a Reference Governor in a Zonotopic Framework Applied to a Quadrotor under Feedback Linearization Control Strategies. J Intell Robot Syst 109, 7 (2023). https://doi.org/10.1007/s10846-023-01947-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01947-7

Keywords

Navigation