Skip to main content
Log in

Wearable Extra Robotic Limbs: A Systematic Review of Current Progress and Future Prospects

  • Review Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Wearable robots have obtained increasing research attention for the potential to provide the wearer with greater strength, higher extensibility, and handleability. Wearable extra robotic limbs (Ex-Limb) as a new type of wearable robot become a hot research issue in recent years. Ex-Limb reconstructs various advantages of robots on the wearer as an extra body part due to the potential of the intelligent robot in promoting working efficiency by automation technology. This paper defines the concept of Ex-Limb and introduces the Ex-Limb from 5 aspects including the development process, the structural design features, the performance parameters, and the application scenario, which are the main considerations of human–robot interaction based on the reported works in the past decade. This paper also systematically summarizes and underlines the current research progress based on different classifications, and mainly analyzes the key technologies including human–robot interactive adapting (HRiA), human–robot interactive perception (HRiP), human–robot interactive control (HRiC), and human–robot collaboration (HRC), thus describing the practical challenges faced by Ex-Limb and giving a prospect of the main technical aspects to be improved in future. It is concluded that human–robot integration is the base of high-level human–robot collaboration, and the interaction between the human brain and the intelligent brain of Ex-Limb would improve the capabilities of Ex-Limb to sense the wearer’s intention and collaborate with the wearer. The essence of HRC is the natural interaction process of integrating the biological system and the physical system, making the physical system become a part of the biological system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., et al.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398), 372–375,267,269 (2012) https://doi.org/10.1038/nature11076.

  2. Sasaki, T., Saraiji, M.Y., Fernando, C.L., Minamizawa, K., Inami, M.: MetaLimbs: multiple arms interaction metamorphism. In: ACM SIGGRAPH 2017 Emerging Technologies pp. 1–2 (2017)

  3. Eden, J., Bräcklein, M., Ibáñez, J., Barsakcioglu, D.Y., Di Pino, G., Farina, D., Mehring, C.: Principles of human movement augmentation and the challenges in making it a reality. Nat Comm 13(1), 1345 (2022)

    Google Scholar 

  4. Kac, E.: Foundation and development of robotic art. Art Journal 56(3), 60–67 (1997)

    Google Scholar 

  5. Llorens-Bonilla, B., Parietti, F., Asada, H.H.: Demonstration-based control of supernumerary robotic limbs. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 3936–3942 (2012)

  6. Jing, H., Zhu, Y., Zhao, S., Zhang, Q., Zhao, J.: Research status and development trend of supernumerary robotic limbs. J Mech Eng 56(7), 1–9 (2020)

    Google Scholar 

  7. Liu, D., Wang, D., Chen, B., Wang, Y., Song, L.: A survey of supernumerary robotic limbs. J Zhejiang University (Engineering Science) 55(2), 251–258 (2021)

    Google Scholar 

  8. Tong, Y., Liu, J.: Review of research and development of supernumerary robotic limbs. IEEE/CAA J Autom Sinica 8(5), 929–952 (2021)

    MathSciNet  Google Scholar 

  9. Prattichizzo, D., Pozzi, M., Baldi, T.L., Malvezzi, M., Hussain, I., Rossi, S., Salvietti, G.: Human augmentation by wearable supernumerary robotic limbs: review and perspectives. Prog Biomed Eng 3(4), 042005 (2021)

    Google Scholar 

  10. Yang, B., Huang, J., Chen, X., Xiong, C., Hasegawa, Y.: Supernumerary robotic limbs: A review and future outlook. IEEE Trans Med Robot Bionics 3(3), 623–639 (2021)

    Google Scholar 

  11. Web of Science. Accessed: Dec. 12, 2022. [Online]. Available: http://www.isiknowledge.com

  12. Science Direct. Accessed: Dec. 12, 2022. [Online]. Available: https://www.sciencedirect.com/.

  13. IEEE Xplore. Accessed: Dec. 12, 2022. [Online]. Available: https://ieeexplore.ieee.org/Xplore/home.jsp

  14. Google Scholars. Accessed: Dec. 12, 2022. [Online]. Available: https://scholar.google.com.hk/

  15. PQDT Global. Accessed: Dec. 12, 2022. [Online]. Available: https://search.proquest.com/

  16. CNKI Scholar. Accessed: Dec. 12, 2022. [Online]. Available: https://www.cnki.net/

  17. WanFang Data. Accessed: Dec. 12, 2022. [Online]. Available: https://www.wanfangdata.com.cn/.

  18. Davenport, C., Parietti, F., Asada, H.H.: Design and biomechanical analysis of supernumerary robotic limbs. In: Dynamic Systems and Control Conference (Vol. 45295, pp. 787–793). American Society of Mechanical Engineers. (2012)

  19. Parietti, F., Asada, H.H.: Supernumerary robotic limbs for aircraft fuselage assembly: body stabilization and guidance by bracing. In: 2014 IEEE International Conference on Robotics and Automation(ICRA) pp. 1176–1183 (2014)

  20. Bonilla, B.L., Asada, H.H.: A robot on the shoulder: Coordinated human-wearable robot control using coloured petri nets and partial least squares predictions. In: 2014 IEEE international conference on robotics and automation(ICRA) pp. 119–125 (2014)

  21. Guggenheim, J., Hoffman, R., Song, H., Asada, H.H.: Leveraging the human operator in the design and control of supernumerary robotic limbs. IEEE Robot Autom Lett 5(2), 2177–2184 (2020)

    Google Scholar 

  22. Song, H., Asada, H.H.: Integrated voluntary-reactive control of a human-superlimb hybrid system for hemiplegic patient support. IEEE Robot Autom Lett 6(2), 1646–1653 (2021)

    Google Scholar 

  23. Sasaki, T., Saraiji, M.Y., Fernando, C.L., Minamizawa, K., Inami, M.: MetaLimbs: Metamorphosis for multiple arms interaction using artificial limbs. In: ACM SIGGRAPH 2017 Posters pp. 1–2 (2017)

  24. Saraiji, M.Y., Sasaki, T., Kunze, K., Minamizawa, K., Inami, M.: Metaarms: Body remapping using feet-controlled artificial arms. In: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology pp. 65–74 (2018)

  25. Gourmelen, G., Verhulst, A., Navarro, B., Sasaki, T., Gowrishankar, G., Inami, M.: Co-limbs: An intuitive collaborative control for wearable robotic arms. In: SIGGRAPH Asia 2019 Emerging Technologies pp. 9–10 (2019)

  26. Khodambashi, R., Weinberg, G., Singhose, W., Rishmawi, S., Murali, V., Kim, E.: User oriented assessment of vibration suppression by command shaping in a supernumerary wearable robotic arm. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids) pp. 1067–1072 (2016)

  27. Shin, C.Y., Bae, J., Hong, D.: Ceiling work scenario based hardware design and control algorithm of supernumerary robotic limbs. In: 2015 15th International Conference on Control, Automation and Systems (ICCAS) pp. 1228–1230 (2015)

  28. Seo, W., Shin, C.Y., Choi, J., Hong, D., Han, C.S.: Applications of supernumerary robotic limbs to construction works: case studies. In: ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction (Vol. 33, p. 1). IAARC Publications. (2016)

  29. Srinivas, S., Virk, G.S., Haider, U.: Multipurpose supernumerary robotic limbs for industrial and domestic applications. In: 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR) pp. 289–293 (2015)

  30. Johns, B., Abdi, E.: Low-Cost Wearable Robotic Arm for Human Augmentation in Overhead Reaching. In: Australasian Conference on Robotics and Automation 2019. (2019)

  31. Dinata, N.F.P., Lin, W.C.: Design Analysis on Tele-operatic Supernumerary Robotic Limb. In: 2019 International Conference on Electrical Engineering and Computer Science (ICECOS) pp. 162–166 (2019)

  32. Nakabayashi, K., Iwasaki, Y., Takahashi, S., Iwata, H.: Experimental evaluation of cooperativeness and collision safety of a wearable robot arm. In: 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) pp. 1026–1031 (2018)

  33. Drohne, L., Nakabayashi, K., Iwasaki, Y., Iwata, H.: Design consideration for arm mechanics and attachment positions of a wearable robot arm. In: 2019 IEEE/SICE International Symposium on System Integration (SII) pp. 645–650 (2019)

  34. Xu, C., Liu, Y., Li, Z.: Biomechtronic design of a supernumerary robotic limbs for industrial assembly. In: 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM) pp. 553–558 (2019)

  35. Shreyanka, S.G., Manisekaran, P., Varma, K.S., Sethuram, D.: Supernumerary Robotic Limbs for the Blind. In: 2020 IEEE 17th India Council International Conference (INDICON) pp. 1–7 (2020)

  36. Huo, J., Yang, B., Ru, H., Huang, J.: Parametric Design Optimization of a Universal Supernumerary Robotic Limb. In: 2021 International Symposium on Micro-Nano Mehatronics and Human Science (MHS) pp. 1–6 (2021)

  37. Luo, J., Gong, Z., Su, Y., Ruan, L., Zhao, Y., Asada, H.H., Fu, C.: Modeling and balance control of supernumerary robotic limb for overhead tasks. IEEE Robot and Autom Lett 6(2), 4125–4132 (2021)

    Google Scholar 

  38. Li, H.B., Guan, X.R., Li, Z., Zou, K.F., Shi, Y.F., Xia, X.H., Zhang, L.F.: Dynamic Analysis and State Estimation of Wearable Extra Robotic Limbs for Physical Assistance and Load Reduction in Missile-mounting. In: Journal of Physics: Conference Series, 1507(5), 052015. IOP Publishing. (2020)

  39. Chang, T., Jiang, S., Chen, B., Liao, Z., Lv, J., Liu, D.: Design of Supernumerary Robotic Limbs and Virtual Test of Human–Machine Interaction Safety. In: International Conference on Mechanical Design pp. 2027–2045. Springer, Singapore. (2021)

  40. Vatsal, V., Hoffman, G.: Design and analysis of a wearable robotic forearm. In: 2018 IEEE International Conference on Robotics and Automation (ICRA) pp. 5489–5496 (2018)

  41. Vatsal, V., Hoffman, G.: Biomechanical Motion Planning for a Wearable Robotic Forearm. IEEE Robot Autom Lett 6(3), 5024–5031 (2021)

    Google Scholar 

  42. Vatsal, V., Hoffman, G.: The Wearable Robotic Forearm: Design and Predictive Control of a Collaborative Supernumerary Robot. Robotics 10(3), 91 (2021)

    Google Scholar 

  43. Carter-Davies, D., Chen, J., Chen, F., Li, M., Yang, C.: Mechatronic design and control of a 3D printed low cost robotic upper limb. In: 2018 11th International Workshop on Human Friendly Robotics (HFR) pp. 1–6 (2018)

  44. Véronneau, C., Denis, J., Lebel, L.P., Denninger, M., Plante, J.S., Girard, A.: A lightweight force-controllable wearable arm based on magnetorheological-hydrostatic actuators. In: 2019 international conference on robotics and automation (ICRA) pp. 4018–4024 (2019)

  45. Véronneau, C., Denis, J., Lebel, L.P., Denninger, M., Blanchard, V., Girard, A., Plante, J.S.: Multifunctional remotely actuated 3-DOF supernumerary robotic arm based on magnetorheological clutches and hydrostatic transmission lines. IEEE Robot Autom Lett 5(2), 2546–2553 (2020)

    Google Scholar 

  46. Ciullo, A.S., Catalano, M. G., Bicchi, A., Ajoudani, A.: A supernumerary soft robotic hand-arm system for improving worker ergonomics. In: International Symposium on Wearable Robotics (pp. 520–524). Springer, Cham (2018)

  47. Ciullo, A.S., Veerbeek, J.M., Temperli, E., Luft, A.R., Tonis, F.J., Haarman, C.J., Bicchi, A.: A novel soft robotic supernumerary hand for severely affected stroke patients. IEEE Trans Neural Syst Rehab Eng 28(5), 1168–1177 (2020)

    Google Scholar 

  48. Kojima, A., Yamazoe, H., Lee, J.H.: Wearable Robot Arm with Consideration of Weight Reduction and Practicality. J Robot Mechatron 32(1), 173–182 (2020)

    Google Scholar 

  49. Al-Sada, M., Höglund, T., Khamis, M., Urbani, J., Nakajima, T.: Orochi: investigating requirements and expectations for multipurpose daily used supernumerary robotic limbs. In: Proceedings of the 10th Augmented Human International Conference 2019 pp. 1–9 (2019)

  50. Al-Sada, M., Jiang, K., Ranade, S., Kalkattawi, M., Nakajima, T.: HapticSnakes: multi-haptic feedback wearable robots for immersive virtual reality. Virtual Real 24(2), 191–209 (2020)

    Google Scholar 

  51. Ding, Z., Yoshida, S., Torii, T., Xie, H.: xLimb: Wearable Robot Arm with Storable and Extendable Mechanisms. In: 12th Augmented Human International Conference pp. 1–4 (2021)

  52. Ding, Z., Yoshida, S., Chong, T., Fukusato, T., Torii, T., Xie, H.: AugLimb: Compact Robotic Limb for Human Augmentation. arXiv preprint arXiv:2109.00133 (2021)

  53. Zhang, Q., Zhu, Y., Zhao, X., Yang, Y., Jing, H., Zhang, G., Zhao, J.: Design of reconfigurable supernumerary robotic limb based on differential actuated joints. Int J Comput Inf Eng 14(4), 115–122 (2020)

    Google Scholar 

  54. Zhao, S., Li, C., Zhang, Z., Zhao, J., Zhu, Y.: Modular and reconfigurable supernumerary robotic limbs. Chin J Sci Inst 42(4), 10 (2021). ((In Chinese))

    Google Scholar 

  55. Nguyen, P., Polygerinos, P. Towards the design of a soft robotic third arm for assisted living tasks. In: 2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob) pp. 1–1 (2017)

  56. Nguyen, P.H., Mohd, I.I., Sparks, C., Arellano, F.L., Zhang, W., Polygerinos, P.: Fabric soft poly-limbs for physical assistance of daily living tasks. In: 2019 International Conference on Robotics and Automation (ICRA) pp. 8429–8435 (2019)

  57. Nguyen, P.H., Sridar, S., Amatya, S., Thalman, C.M., Polygerinos, P.: Fabric-based soft grippers capable of selective distributed bending for assistance of daily living tasks. In: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) pp. 404–409 (2019)

  58. Nguyen, P.H., Sparks, C., Nuthi, S.G., Vale, N.M., Polygerinos, P.: Soft poly-limbs: Toward a new paradigm of mobile manipulation for daily living tasks. Soft Rob 6(1), 38–53 (2019)

    Google Scholar 

  59. Liang, X., Yap, H.K., Guo, J., Yeow, R. C.H., Sun, Y., Chui, C.K.: Design and characterization of a novel fabric-based robotic arm for future wearable robot application. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO) pp. 367–372 (2017)

  60. Liang, X., Cheong, H., Chui, C.K., Yeow, C.H.: A fabric-based wearable soft robotic limb. J Mech Robot 11(3), 031003 (2019)

    Google Scholar 

  61. Wu, F., Asada, H.: Supernumerary robotic fingers: an alternative upper-limb prosthesis. In: Dynamic Systems and Control Conference 46193, V002T16A009 (2014). American Society of Mechanical Engineers

  62. Wu, F. Y., Asada, H. H.: “Hold-and-manipulate” with a single hand being assisted by wearable extra fingers. In: 2015 IEEE International Conference on Robotics and Automation (ICRA) pp. 6205–6212 (2015)

  63. Ort, T., Wu, F., Hensel, N.C., Asada, H.H.: Supernumerary robotic fingers as a therapeutic device for hemiparetic patients. In: Dynamic Systems and Control Conference 57250, V002T27A010 (2015) American Society of Mechanical Engineers.

  64. Prattichizzo, D., Malvezzi, M., Hussain, I., Salvietti, G.: The sixth-finger: a modular extra-finger to enhance human hand capabilities. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication pp. 993–998 (2014)

  65. Hussain, I., Salvietti, G., Spagnoletti, G., Prattichizzo, D.: The soft-sixthfinger: a wearable emg controlled robotic extra-finger for grasp compensation in chronic stroke patients. IEEE Robot Autom Lett 1(2), 1000–1006 (2016)

    Google Scholar 

  66. Hussain, I., Spagnoletti, G., Salvietti, G., Prattichizzo, D.: Toward wearable supernumerary robotic fingers to compensate missing grasping abilities in hemiparetic upper limb. Int J Robot Res 36(13–14), 1414–1436 (2017)

    Google Scholar 

  67. Hussain, I., Anwar, M., Iqbal, Z., Muthusamy, R., Malvezzi, M., Seneviratne, L., Prattichizzo, D.: Design and prototype of supernumerary robotic finger (SRF) inspired by fin ray® effect for patients suffering from sensorimotor hand impairment. In: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) pp. 398–403 (2019)

  68. Franco, L., Prattichizzo, D., Salvietti, G.: A Manually Actuated Robotic Supernumerary Finger To Recover Grasping Capabilities. In: 2021 IEEE International Humanitarian Technology Conference (IHTC) 1–4 (2021)

  69. Sobajima, M., Sato, Y., Xufeng, W., Hasegawa, Y.: Improvement of operability of extra robotic thumb using tactile feedback by electrical stimulation. In: 2015 International Symposium on Micro-NanoMechatronics and Human Science (MHS) pp. 1–3 (2015)

  70. Leigh, S.W., Maes, P.: Body integrated programmable joints interface. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems pp. 6053–6057 (2016)

  71. Ariyanto, M., Ismail, R., Setiawan, J.D., Arifin, Z.: Development of low cost supernumerary robotic fingers as an assistive device. In: 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI) (pp. 1–6 (2017)

  72. Cunningham, J., Hapsari, A., Guilleminot, P., Shafti, A., Faisal, A. A.: The supernumerary robotic 3rd thumb for skilled music tasks. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob) pp. 665–670 (2018)

  73. Al-Sada, M.: Design Space of Multipurpose Daily Worn Snake-Shaped Robotic Appendages. In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) pp. 455–456 (2019)

  74. Lin, X., Xiao, X., Guo, Z.: Mechanical Design of a Supernumerary Robotic Finger for Grasping Abilities Compensation. In: 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 1792–1797 (2021)

  75. Tiziani, L., Hart, A., Cahoon, T., Wu, F., Asada, H.H., Hammond, F.L.: Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices. Int J Robot Res 36(13–14), 1391–1413 (2017)

    Google Scholar 

  76. Hammond III, F.L., Wu, F., Asada, H.H.: Variable stiffness pneumatic structures for wearable supernumerary robotic devices. In: Robotics Research pp. 201–217 (2018). Springer, Cham

  77. Hu, Y., Leigh, S. W., Maes, P.: Hand development kit: Soft robotic fingers as prosthetic augmentation of the hand. In: Adjunct Publication of the 30th Annual ACM Symposium on User Interface Software and Technology pp. 27–29 (2017)

  78. Liu, S., Zhu, Y., Zhang, Z., Fang, Z., Tan, J., Peng, J., Wang, Z.: Otariidae-inspired soft-robotic supernumerary flippers by fabric kirigami and origami. IEEE/ASME Trans Mech 26(5), 2747–2757 (2020)

    Google Scholar 

  79. Parietti, F., Chan, K.C., Hunter, B., Asada, H.H.: Design and control of supernumerary robotic limbs for balance augmentation. In: 2015 IEEE International Conference on Robotics and Automation (ICRA) pp. 5010–5017 (2015)

  80. Parietti, F., Asada, H.: Supernumerary robotic limbs for human body support. IEEE Trans Rob 32(2), 301–311 (2016)

    Google Scholar 

  81. Gonzalez, D.J., Asada, H.H.: Design of extra robotic legs for augmenting human payload capabilities by exploiting singularity and torque redistribution. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4348–4354 (2018)

  82. Kurek, D.A., Asada, H.H.: The MantisBot: Design and impedance control of supernumerary robotic limbs for near-ground work. In: 2017 IEEE International Conference on Robotics and Automation (ICRA) pp. 5942–5947 (2017)

  83. Hahm, K.S., Asada, H.H.: Design of a fail-safe wearable robot with novel extendable arms for ergonomic accommodation during floor work. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 8179–8184 (2019)

  84. Daniel, P.H., Asada, H.H.: Stable crawling policy for wearable superlimbs attached to a human with tuned impedance. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) pp. 3496–3503 (2020)

  85. Xie, H., Mitsuhashi, K., Torii, T.: Augmenting human with a tail. In: Proceedings of the 10th Augmented Human International Conference 2019 pp. 1–7 (2019)

  86. Khazoom, C., Caillouette, P., Girard, A., Plante, J.S.: A supernumerary robotic leg powered by magnetorheological actuators to assist human locomotion. IEEE Robot Autom Lett 5(4), 5143–5150 (2020)

    Google Scholar 

  87. Hao, M., Zhang, J., Chen, K., Fu, C. (2019, October). Design and basic control of extra robotic legs for dynamic walking assistance. In: 2019 IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO) pp. 246–250 (2019)

  88. Hao, M., Zhang, J., Chen, K., Asada, H., Fu, C.: Supernumerary robotic limbs to assist human walking with load carriage. J Mech Robot, 12(6)

  89. Wu, X., Liu, H., Liu, Z., Chen, M., Wan, F., Fu, C., Song, C.: Robotic cane as a soft superlimb for elderly sit-to-stand assistance. In: 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) pp. 599–606 (2020)

  90. Li, H. B., Guan, X.R., Li, Z., Li, Y., Shi, Y.F., Wang, Z.: Hybrid Dual-mode Gait Planning of Wearable Extra Robotic Legs based on Multi-level Inverted Pendulum Model. In: 2020 IEEE 18th International Conference on Industrial Informatics (INDIN) 1, pp. 687–694 (2020)

  91. Ciullo, A.S., Felici, F., Catalano, M.G., Grioli, G., Ajoudani, A., Bicchi, A.: Analytical and experimental analysis for position optimization of a grasp assistance supernumerary robotic hand. IEEE Robot Autom Lett 3(4), 4305–4312 (2018)

    Google Scholar 

  92. Nakabayashi, K., Iwasaki, Y., Iwata, H. : Development of evaluation indexes for human-centered design of a wearable robot arm. In: Proceedings of the 5th International Conference on Human Agent Interaction pp. 305–310 (2017)

  93. ziyu liao, baichen. Consideration and analysis for attachment position of supernumerary robotic limbs, 16 November 2021, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1084129/v1]

  94. Kojima, A., Tran, D.T., Lee, J.H.: Investigation of the Mounting Position of a Wearable Robot Arm. Robotics 11(1), 19 (2022)

    Google Scholar 

  95. Kojima, A., Tran, D.T., Lee, J.H.: Considerations of Mounting Method for Wearable Robot Arm. In: 2022 19th International Conference on Ubiquitous Robots (UR) (pp. 258–262 (2022)

  96. Maimeri, M., Della Santina, C., Piazza, C., Rossi, M., Catalano, M.G., Grioli, G.: Design and assessment of control maps for multi-channel sEMG-driven prostheses and supernumerary limbs. Front Neurorobot 13, 26 (2019)

    Google Scholar 

  97. Guggenheim, J.W., Asada, H.H.: Inherent haptic feedback from supernumerary robotic limbs. IEEE Trans Haptics 14(1), 123–131 (2020)

    Google Scholar 

  98. Parietti, F., Asada, H.H.:Dynamic analysis and state estimation for wearable robotic limbs subject to human-induced disturbances. In: 2013 IEEE International Conference on Robotics and Automation (pp. 3880–3887 (2013)

  99. Llorens-Bonilla, B., Asada, H.H.: Control and coordination of supernumerary robotic limbs based on human motion detection and task petri net model. In: Dynamic Systems and Control Conference 56130, V002T27A006 (2013). American Society of Mechanical Engineers.

  100. Penaloza, C., Hernandez-Carmona, D., Nishio, S.: Towards intelligent brain-controlled body augmentation robotic limbs. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) pp. 1011–1015 (2018)

  101. Hussain, I., Spagnoletti, G., Salvietti, G., Prattichizzo, D.: An EMG interface for the control of motion and compliance of a supernumerary robotic finger. Front Neurorobot 10, 18 (2016)

    Google Scholar 

  102. Salvietti, G., Hussain, I., Cioncoloni, D., Taddei, S., Rossi, S., Prattichizzo, D.: Compensating hand function in chronic stroke patients through the robotic sixth finger. IEEE Trans Neural Syst Rehabil Eng 25(2), 142–150 (2016)

    Google Scholar 

  103. Hussain, I., Salvietti, G., Spagnoletti, G., Malvezzi, M., Cioncoloni, D., Rossi, S., Prattichizzo, D.: A soft supernumerary robotic finger and mobile arm support for grasping compensation and hemiparetic upper limb rehabilitation. Robot Auton Syst 93, 1–12 (2017)

    Google Scholar 

  104. Prattichizzo, D., Salvietti, G., Chinello, F., Malvezzi, M.: An object-based mapping algorithm to control wearable robotic extra-fingers. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics pp. 1563–1568 (2014)

  105. Parietti, F., Asada, H.H.: Independent, voluntary control of extra robotic limbs. In: 2017 IEEE International Conference on Robotics and Automation (ICRA) pp. 5954–5961 (2017)

  106. Shikida, H., Noel, S.M., Hasegawa, Y.: Acquisition of new body representation about extra robotic thumb by use of vestigial muscles. In: 2017 IEEE International Conference on Cyborg and Bionic Systems (CBS) (pp. 211–214 (2017)

  107. Meraz, N.S., Shikida, H., Hasegawa, Y.: Auricularis muscles based control interface for robotic extra thumb. In: 2017 International Symposium on Micro-Nano Mechatronics and Human Science (MHS) pp. 1–3 (2017)

  108. Wu, F.Y., Asada, H.H.: Implicit and intuitive grasp posture control for wearable robotic fingers: a data-driven method using partial least squares. IEEE Trans Rob 32(1), 176–186 (2016)

    Google Scholar 

  109. Fan, Z., Lin, C., Fu, C.: A Gaze Signal Based Control Method for Supernumerary Robotic Limbs. In 2020 3rd International Conference on Control and Robots (ICCR) pp. 107–111 (2020)

  110. Hussain, I., Meli, L., Pacchierotti, C., Prattichizzo, D.: A soft robotic supernumerary finger and a wearable cutaneous finger interface to compensate the missing grasping capabilities in chronic stroke patients. In: 2017 IEEE World Haptics Conference (WHC) pp. 183–188 (2017)

  111. Hussain, I., Salvietti, G., Meli, L., Pacchierotti, C., Cioncoloni, D., Rossi, S., Prattichizzo, D.: Using the robotic sixth finger and vibrotactile feedback for grasp compensation in chronic stroke patients. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) pp. 67–72 (2015)

  112. Hussain, I., Meli, L., Pacchierotti, C., Salvietti, G., Prattichizzo, D.: Vibrotactile haptic feedback for intuitive control of robotic extra fingers. In: World Haptic pp. 394–399 (2015)

  113. Saraiji, M.Y., Sasaki, T., Matsumura, R., Minamizawa, K., Inami, M.: Fusion: full body surrogacy for collaborative communication. In ACM SIGGRAPH 2018 Emerging Technologies pp. 1–2 (2018)

  114. Ismail, R., Ariyanto, M., Pambudi, K.A., Syafei, J.W., Ananto, G.P.: Extra robotic thumb and exoskeleton robotic fingers for patient with hand function disability. In: 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI) pp. 1–6 (2017)

  115. Shikida, H., Hasegawa, Y.: Hand space change after use of extra robotic thumb. In: 2016 International Symposium on Micro-Nano Mechatronics and Human Science (MHS) pp. 1–4 (2016)

  116. Shikida, H., Noel, S.M., Hasegawa, Y.: Somatosensory feedback improves operability of extra robotic thumb controlled by vestigial muscles. In: 2017 International Symposium on Micro-Nano Mechatronics and Human Science (MHS) pp. 1–4 (2017)

  117. Zhu, Y., Ito, T., Aoyama, T., Hasegawa, Y.: Development of sense of self-location based on somatosensory feedback from finger tips for extra robotic thumb control. ROBOMECH Journal 6(1), 1–10 (2019)

    Google Scholar 

  118. Wang, W., Liu, Y., Li, Z., Wang, Z., He, F., Ming, D., Yang, D.: Building multi-modal sensory feedback pathways for SRL with the aim of sensory enhancement via BCI. In: 2019 Ieee International Conference on Robotics and Biomimetics (Robio) pp. 2439–2444 (2019)

  119. Noccaro, A., Raiano, L., Pinardi, M., Formica, D., Di Pino, G.: A novel proprioceptive feedback system for supernumerary robotic limb. In: 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob) pp. 1024–1029 (2020)

  120. Pinardi, M., Raiano, L., Noccaro, A., Formica, D., Di Pino, G.: Cartesian Space Feedback for Real Time Tracking of a Supernumerary Robotic Limb: a Pilot Study. In: 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER) pp. 889–892 (2021)

  121. Oh, J., Ando, K., Iizuka, S., Guinot, L., Kato, F., Iwata, H.: 3D Head Pointer: A manipulation method that enables the spatial localization for a wearable robot arm by head bobbing. In: 2020 23rd International Symposium on Measurement and Control in Robotics (ISMCR) pp. 1–6 (2020)

  122. Oh, J., Kato, F., Yukiko, I., Iwata, H.: A 3D head pointer: a manipulation method that enables the spatial position and posture for supernumerary robotic limbs. Acta Imeko 10(3), 81–90 (2021)

    Google Scholar 

  123. Takizawa, R., Verhulst, A., Seaborn, K., Fukuoka, M., Hiyama, A., Kitazaki, M., Sugimoto, M. (2019, December). Exploring perspective dependency in a shared body with virtual supernumerary robotic arms. In: 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR) pp. 25–257 (2019)

  124. Drogemuller, A., Verhulst, A., Volmer, B., Thomas, B.H., Inami, M., Sugimoto, M.: Remapping a third arm in virtual reality. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) pp. 898–899 (2019)

  125. Tang, Z., Zhang, L., Chen, X., Ying, J., Wang, X., Wang, H.: Wearable Supernumerary Robotic Limb System Using a Hybrid Control Approach Based on Motor Imagery and Object Detection. IEEE Trans Neural Syst Rehabil Eng 30, 1298–1309 (2022)

    Google Scholar 

  126. Abdi, E., Burdet, E., Bouri, M., Bleuler, H.: Control of a supernumerary robotic hand by foot: An experimental study in virtual reality. PLoS ONE 10(7), e0134501 (2015)

    Google Scholar 

  127. Huang, Y., Eden, J., Cao, L., Burdet, E., Phee, S.J.: Tri-manipulation: an evaluation of human performance in 3-handed teleoperation. IEEE Trans Med Robot Bionics 2(4), 545–548 (2020)

    Google Scholar 

  128. Noccaro, A., Eden, J., Di Pino, G., Formica, D., Burdet, E.: Human performance in three-hands tasks. Sci Rep 11(1), 1–8 (2021)

    Google Scholar 

  129. Huang, Y., Eden, J., Ivanova, E., Phee, S.J., Burdet, E.: Trimanipulation: evaluation of human performance in a 3-handed coordination task. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) pp. 882–887 (2021)

  130. Huang, Y., Ivanova, E., Eden, J., Burdet, E.: Identification of Multiple Limbs Coordination Strategies in a Three-Goal Independent Task. IEEE Trans Med Robot Bionics 4(2), 348–351 (2021)

    Google Scholar 

  131. Huang, Y., Eden, J., Ivanova, E., Burdet, E.: Human Performance of Three Hands in Unimanual, Bimanual and Trimanual Tasks. In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1493–1497 (2022)

  132. Wu, F., Asada, H.: Bio-Artificial Synergies for Grasp Posture Control of Supernumerary Robotic Fingers. In: Robotics: Science and Systems X. University of California, Berkeley, USA (2014)

  133. Wu, F.Y., Asada, H.H.: Decoupled motion control of wearable robot for rejecting human induced disturbances. In: 2018 IEEE International Conference on Robotics and Automation(ICRA) pp. 4103–4110 (2018)

  134. Franco, L., Tschiersky, M., Wolterink, G., Barontini, F., Poggiani, M., Catalano, M., Salvietti, G.: The SoftPro Wearable System for Grasp Compensation in Stroke Patients. In: International Symposium on Wearable Robotics pp. 363–367 (2020). Springer, Cham

  135. Gonzalez, D.J., Asada, H.H.: Hybrid open-loop closed-loop control of coupled human–robot balance during assisted stance transition with extra robotic legs. IEEE Robot Autom Lett 4(2), 1676–1683 (2019)

    Google Scholar 

Download references

Acknowledgements

All authors would like to thank the reviewers and the editor for their constructive remarks and suggestions for improving this paper. Thanks to the support of the Team of Wearable Intelligence Technology at Nanjing University of Science and Technology.

Funding

This work was supported in part by the National Defense Basic Scientific Research Program of China (Grant Number B1020132012).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection was performed by Hui-Bin Li, Zhong Li and Long He, data analysis was performed by Hui-Bin Li and Xiao-Rong Guan. The first draft of the manuscript was written by Hui-Bin Li and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-Rong Guan.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HB., Li, Z., He, L. et al. Wearable Extra Robotic Limbs: A Systematic Review of Current Progress and Future Prospects. J Intell Robot Syst 109, 16 (2023). https://doi.org/10.1007/s10846-023-01940-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01940-0

Keywords

Navigation