Skip to main content
Log in

Quasi-Static State Feedback Output Tracking for a Slung Load System with Rotor Drag Compensation: PX4-SITL Validation

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents an algorithm for designing a quasi-static state feedback (QSF) for differentially flat nonlinear systems. QSF achieves linear time-invariant (LTI) exponentially stable error dynamics which simplifies controller tuning. The linearizing feedback has an important static dependence on state, i.e., the controller is not dynamic even though traditional static state feedback linearization is not possible. We apply the algorithm to a Slung Load System (SLS), which is a flat system consisting of a multirotor drone and suspended payload. After linearization using the QSF, a straightforward output tracking control yields LTI exponentially stable error dynamics in the design coordinates. The QSF is designed to compensate for rotor drag and blade flapping. Integral action compensates for constant force and torque disturbance. The control design is tested in an open-source PX4 Software-in-the-Loop (SITL) simulation. An automatic software pipeline is presented for transforming the symbolic controller expression into a C++ executable which can run on a real-world autopilot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code Availability

https://github.com/ANCL/SLS_PX4_SITL

References

  1. Villa, D.K.D., Brandão, A.S., Sarcinelli-Filho, M.: A survey on load transportation using multirotor UAVs. J. Intell. Robot. Syst. 98(2), 267–296 (2020). https://doi.org/10.1007/s10846-019-01088-w

    Article  Google Scholar 

  2. Yu, G., Cabecinhas, D., Cunha, R., Silvestre, C.: Aggressive maneuvers for a quadrotor-slung-load system through fast trajectory generation and tracking. Autonomous Robots 46(4), 499–513 (2022). https://doi.org/10.1007/s10514-022-10035-y

    Article  Google Scholar 

  3. Sreenath, K., Lee, T., Kumar, V.: Geometric control and differential flatness of a quadrotor UAV with a cable-suspended load. In: Proc. IEEE Conf. on Decision and Control, Firenze, Italy, pp 2269-2274 (2013). https://doi.org/10.1109/cdc.2013.6760219

  4. Lee, T.: Geometric control of multiple quadrotor uavs transporting a cable-suspended rigid body. In: Proc. IEEE Conf. on Decision and Control, Los Angeles, CA, pp 6155-6160 (2014). https://doi.org/10.1109/CDC.2014.7040353

  5. Bernard, M., Kondak, K.: Generic slung load transportation system using small size helicopters. In: Proc. IEEE Int. Conf. on Robotics and Automation, Kobe, Japan, pp 3258–3264 (2009). https://doi.org/10.1109/ROBOT.2009.5152382

  6. Sanalitro, D., Savino, H.J., Tognon, M., Cortes, J., Franchi, A.: Full-pose manipulation control of a cable-suspended load with multiple UAVs under uncertainties. IEEE Robot. Auto. Lett. 5(2), 2185–2191 (2020). https://doi.org/10.1109/lra.2020.2969930

    Article  Google Scholar 

  7. Khamseh, H.B., Janabi-Sharifi, F., Abdessameud, A.: Aerial manipulation-a literature survey. Robot. Autonomous Syst. 107, 221–235 (2018). https://doi.org/10.1016/j.robot.2018.06.012

    Article  Google Scholar 

  8. Ruggiero, F., Lippiello, V., Ollero, A.: Aerial manipulation: A literature review. IEEE Robot. Auto. Lett. 3(3), 1957–1964 (2018). https://doi.org/10.1109/LRA.2018.2808541

    Article  Google Scholar 

  9. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and defect of non-linear systems: introductory theory and examples. Int. J. Control 61(6), 1327–1361 (1995). https://doi.org/10.1080/00207179508921959

    Article  MathSciNet  MATH  Google Scholar 

  10. Martin, P., Murray, R., Rouchon, P.: Flat systems. Plenary Lectures and Mini-Courses 4th European Control Conference, 1–55 (1997)

  11. Rudolph, J.: Flatness-based Control: an Introduction. Shaker Verlag, Saarbrücken (2021)

    Google Scholar 

  12. Delaleau, E., Rudolph, J.: Control of flat systems by quasi-static feedback of generalized states. Int. J. Control 71(5), 745–765 (1998). https://doi.org/10.1080/002071798221551

    Article  MathSciNet  MATH  Google Scholar 

  13. Nicolau, F., Respondek, W.: Flatness of multi-input control-affine systems linearizable via one-fold prolongation. SIAM J. Control Opt. 55(5), 3171–3203 (2017). https://doi.org/10.1137/140999463

    Article  MathSciNet  MATH  Google Scholar 

  14. Gstöttner, C., Kolar, B., Schöberl, M.: Necessary and sufficient conditions for the linearisability of two-input systems by a two-dimensional endogenous dynamic feedback. Int. J. Control 1–22 (2021) arXiv:2106.14722, https://doi.org/10.1080/00207179.2021.2015542

  15. Zhou, X., Wen, X., Wang, Z., Gao, Y., Li, H., Wang, Q., Yang, T., Lu, H., Cao, Y., Xu, C., et al.: Swarm of micro flying robots in the wild. Sci. Robot. 7(66), 5954 (2022). https://doi.org/10.1126/scirobotics.abq2215

    Article  Google Scholar 

  16. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Oulu (2006)

    Book  MATH  Google Scholar 

  17. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: Proc. IEEE Int. Conf. on Robotics and Automation, Shanghai, China, pp 2520-2525 (2011). https://doi.org/10.1109/ICRA.2011.5980409

  18. Morrell, B., Rigter, M., Merewether, G., Reid, R., Thakker, R., Tzanetos, T., Rajur, V., Chamitoff, G.: Differential flatness transformations for aggressive quadrotor flight. In: Proc. IEEE Int. Conf. on Robotics and Automation, Brisbane, Australia, pp 5204-5210 (2018). https://doi.org/10.1109/ICRA.2018.8460838

  19. Tal, E., Karaman, S.: Accurate tracking of aggressive quadrotor trajectories using incremental nonlinear dynamic inversion and differential flatness. IEEE Trans. Control Syst. Technol. 29(3), 1203–1218 (2020). https://doi.org/10.1109/TCST.2020.3001117

    Article  Google Scholar 

  20. Faessler, M., Franchi, A., Scaramuzza, D.: Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories. IEEE Robot. Auto. Lett. 3(2), 620–626 (2017). https://doi.org/10.1109/LRA.2017.2776353

    Article  Google Scholar 

  21. Sun, S., Romero, A., Foehn, P., Kaufmann, E., Scaramuzza, D.: A comparative study of nonlinear MPC and differential-flatness-based control for quadrotor agile flight. IEEE Trans. Robot. (2022). https://doi.org/10.1109/TRO.2022.3177279

    Article  Google Scholar 

  22. Yu, G., Cabecinhas, D., Cunha, R., Silvestre, C.: Nonlinear backstepping control of a quadrotor-slung load system. IEEE/ASME Trans. Mechatronics 24(5), 2304–2315 (2019). https://doi.org/10.1109/tmech.2019.2930211

    Article  Google Scholar 

  23. Yang, S., Xian, B.: Exponential regulation control of a quadrotor unmanned aerial vehicle with a suspended payload. IEEE Trans. Control Syst. Technol. 28(6), 2762–2769 (2020). https://doi.org/10.1109/tcst.2019.2952826

    Article  Google Scholar 

  24. Klausen, K., Fossen, T.I., Johansen, T.A.: Nonlinear control with swing damping of a multirotor UAV with suspended load. J. Intell. Robot. Syst. 88(2–4), 379–394 (2017). https://doi.org/10.1007/s10846-017-0509-6

    Article  Google Scholar 

  25. Sreenath, K., Michael, N., Kumar, V.: Trajectory generation and control of a quadrotor with a cable-suspended load - a differentially-flat hybrid system. In: Proc. IEEE Int. Conf. on Robotics and Automation, Karlsruhe, Germany, pp 4888-4895 (2013). https://doi.org/10.1109/icra.2013.6631275

  26. Yu, G., Cabecinhas, D., Cunha, R., Silvestre, C.: Nonlinear backstepping control of a quadrotor-slung load system. IEEE/ASME Trans. Mechatronics 24(5), 2304–2315 (2019)

    Article  Google Scholar 

  27. Yu, G., Xie, W., Cabecinhas, D., Cunha, R., Silvestre, C.: Adaptive control with unknown mass estimation for a quadrotor-slung-load system. ISA Trans. 133, 412–423 (2023). https://doi.org/10.1016/j.isatra.2022.06.036

    Article  Google Scholar 

  28. Yu, G., Reis, J., Cabecinhas, D., Cunha, R., Silvestre, C.: Reduced-complexity active disturbance rejection controller for quadrotor-slung-load transportation. IEEE Trans. Syst. Man Cybernetics: Syst. 1–12 (2023). https://doi.org/10.1109/tsmc.2023.3263881

  29. Cabecinhas, D., Cunha, R., Silvestre, C.: A trajectory tracking control law for a quadrotor with slung load. Automatica 106, 384–389 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Flores, G., de Oca, A.M., Flores, A.: Robust nonlinear control for the fully actuated hexa-rotor: Theory and experiments. IEEE Control Syst. Lett. 7, 277–282 (2023). https://doi.org/10.1109/lcsys.2022.3188517

    Article  MathSciNet  Google Scholar 

  31. Nguyen, N.P., Oh, H., Moon, J.: Continuous nonsingular terminal sliding-mode control with integral-type sliding surface for disturbed systems: Application to attitude control for quadrotor UAVs under external disturbances. IEEE Trans. Aerospace Electron. Syst. 58(6), 5635–5660 (2022). https://doi.org/10.1109/taes.2022.3177580

    Article  Google Scholar 

  32. Lv, Z.-Y., Wu, Y., Rui, W.: Nonlinear motion control for a quadrotor transporting a cable-suspended payload. IEEE Trans. Veh. Technol. 69(8), 8192–8206 (2020). https://doi.org/10.1109/tvt.2020.2997733

  33. Lv, Z.-Y., Li, S., Wu, Y., Wang, Q.-G.: Adaptive control for a quadrotor transporting a cable-suspended payload with unknown mass in the presence of rotor downwash. IEEE Trans. Veh. Technol. 70(9), 8505–8518 (2021). https://doi.org/10.1109/tvt.2021.3096234

  34. Lv, Z., Zhao, Q., Li, S., Wu, Y.: Finite-time control design for a quadrotor transporting a slung load. Control Eng. Practice 122, 105082 (2022). https://doi.org/10.1016/j.conengprac.2022.105082

    Article  Google Scholar 

  35. Zeng, J., Sreenath, K.: Geometric control of a quadrotor with a load suspended from an offset. In: Proc. American Control Conf., Philadelphia, PA, pp 3044–3050 (2019). https://doi.org/10.23919/ACC.2019.8814939

  36. Rudolph, J., Delaleau, E.: Some remarks on quasi-static feedback of generalized states. In: IFAC Proceedings Volumes, vol 27, pp 51–56 (1994). https://doi.org/10.1016/S1474-6670(17)47621-X

  37. Delaleau, E., Rudolph, J.: Some examples and remarks on quasi-static feedback of generalized states. Automatica 34(8), 993–999 (1998). https://doi.org/10.1016/s0005-1098(98)00047-8

    Article  MathSciNet  MATH  Google Scholar 

  38. Fritsch, O., Monte, P.D., Buhl, M., Lohmann, B.: Quasi-static feedback linearization for the translational dynamics of a quadrotor helicopter. In: Proc. American Control Conf, Montreal, QC, Canada (2012). https://doi.org/10.1109/acc.2012.6314682

  39. Jiang, Z., Al Lawati, M., Mohammadhasani, A., Lynch, A.F.: Flatness-based motion control of a UAV slung load system using quasi-static feedback linearization. In: Proc. Int. Conf. on Unmanned Aircraft Systems, Dubrovnik, Croatia, pp 361-368 (2022). https://doi.org/10.1109/10.1109/ICUAS54217.2022.9836232

  40. Kai, J.-M., Allibert, G., Hua, M.-D., Hamel, T.: Nonlinear feedback control of quadrotors exploiting first-order drag effects. IFAC-PapersOnLine 50(1), 8189–8195 (2017)

    Article  Google Scholar 

  41. Faessler, M., Franchi, A., Scaramuzza, D.: Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories. IEEE Robot. Auto. Lett. 3(2), 620–626 (2017)

    Article  Google Scholar 

  42. Lynch, K.M., Park, F.C.: Modern robotics. Cambridge University Press, Evanston (2017)

    Google Scholar 

  43. Meier, L., Agar, D., Küng, B.: PX4/PX4-Autopilot: Stable Release V1.13.0. https://doi.org/10.5281/zenodo.6682275

  44. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proc. Int. Conf. on Intelligent Robots and Systems, Sendai, Japan, pp 2149-2154 (2004). https://doi.org/10.1109/IROS.2004.1389727.

  45. Furrer, F., Burri, M., Achtelik, M., Siegwart, R.: RotorS–A Modular Gazebo MAV Simulator Framework. In: Koubaa, A. (ed.) Robot Operating System (ROS): The Complete Reference, vol. 1, pp 595–625. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26054-923

  46. Smith, R., et al.: Open dynamics engine (2007)

  47. Martin, P., Salaün, E.: The true role of accelerometer feedback in quadrotor control. In: Proc. IEEE Int. Conf. on Robotics and Automation, Anchorage, AK, pp 1623-1629 (2010). https://doi.org/10.1109/ROBOT.2010.5509980

  48. Gill, R., D’Andrea, R.: Computationally efficient force and moment models for propellers in UAV forward flight applications. Drones 3(4), 77 (2019)

    Article  Google Scholar 

  49. Craig, W., Yeo, D., Paley, D.A.: Dynamics of a rotor-pendulum with a small, stiff propeller in wind. In: Proc. Dynamic Systems and Control Conf., pp V001T05A001 (2016). https://doi.org/10.1115/DSCC2016-9774

  50. Al Lawati, M. Jiang, Z., Lynch, A.F.: Output Tracking Dynamic Feedback Linearization of a Multirotor Suspended Load System with Disturbance Robustness. J. Intell. Robot. Syst. 108, (2023). https://doi.org/10.1007/s10846-023-01904-4

Download references

Funding

This work was supported by the Natural Science and Engineering Research Council of Canada (NSERC) and Ministry of Economic Development and Trade, Government of Alberta. Zifei Jiang is supported by the China Scholarship Council (CSC) Scholarship

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, design and analysis were performed by Zifei Jiang and Alan Lynch. Preliminary study was done by Mohamed Al Lawati. The first draft of the manuscript was written by Zifei Jiang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript

Corresponding author

Correspondence to Alan Lynch.

Ethics declarations

Ethics Approval

The research does not involve human participants, their data or biological material and it does not involve animals

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Al Lawati, M. & Lynch, A. Quasi-Static State Feedback Output Tracking for a Slung Load System with Rotor Drag Compensation: PX4-SITL Validation. J Intell Robot Syst 109, 42 (2023). https://doi.org/10.1007/s10846-023-01937-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01937-9

Keywords

Navigation