Skip to main content
Log in

An Effective Approach of Collision Avoidance for UAV

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In the last decade, the collision avoidance of Unmanned Aerial Vehicles (UAVs) has become increasingly important for the safe operation of UAVs. In this article, an effective conflict detection and alerting principle is firstly proposed based on mixed collision cone and alerting criterion for the collision avoidance of UAV. Second, a reactive collision avoidance and trajectory recovery strategy (RCATRS) is presented based on the model of relative kinematics. In this strategy, by acting an acceleration vector with different magnitude and direction on UAV, a horizontal collision avoidance maneuver is realized in situations of different relative position and velocity vector. When UAV has bypassed the obstacle, the horizontal trajectory recovery maneuver is initiated to make UAV to return to original flight paths. Thus, different recovery trajectories corresponding with different relative velocity vector are planned. Finally, the safety controller is designed to apply RCATRS to autonomous quadrotor. Since a few of computation is off-line, RCATRS is simple in implement and can satisfy the request of running in real time. The results of simulation show the validity of the proposed RCATRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code or Data availability

All research data supporting this paper are directly available within this paper.

Data Availability

“By replacing SBMCA with RCATRS, the expended time can decrease about 10%.” is inserted behind the word “maneuver.” in row 1152, 23 pages.

References

  1. Yasin, J.N., Mohamed, S.A.S., Haghbayan, Heikkonen, M.-H., Tenhunen, J., Plosila, H. J: Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems and Approaches. IEEE Access. 8, 105139–105155 (2020)

    Article  Google Scholar 

  2. Park, J. W., On, H. D., Tahk, M. J.: UAV collision avoidance based on geometric approach. in: SICE Annu. Conf., pp. 2122–2126(2008). https://doi.org/10.1109/SICE.2008.4655013

  3. Drouilher, P., Knittel, G., Orlando, V.: Automatic dependent surveillance air navigation system. US Patent 5.570.095. http://www.google.com/patents/US5570095. (1996). Accessed 16 April 2016

  4. Lin, Z., Castano, L., Mortimer, E., Xu, H.: Fast 3D collision avoidance algorithm for fixed wing UAS. J. Int. Robot. Syst. 97, 577–604 (2020)

    Article  Google Scholar 

  5. Santos, M.C.P., Rosales, C.D., Sarcinelli-Filho, M., Carelli, R.: A novel null-space-based UAV trajectory tracking controller with collision avoidance. IEEE Trans. Mechatron. 22(6), 2543–2553 (2017)

    Article  Google Scholar 

  6. de Angelis, E.L., Giulietti, F., Rossetti, G.: Multirotor aircraft formation flight control with collision avoidance capability. Aerosp. Sci. Technol. 77, 733–741 (2018)

    Article  Google Scholar 

  7. Pang, Z.-H., Zhang, C.-B., Sun, J., Han, Q.-L., Liu, G.-P.: Distance and velocity-based collision avoidance for time-varying formation control of second-order multi-agent systems. IEEE. Trans. Circuits. Syst. II. Exp. Briefs. 68(4), 1253–1257 (2021)

    Google Scholar 

  8. Pierpaoli, P., Rahmani, A.: UAV collision avoidance exploitation for noncooperative trajectory modification. Aerosp. Sci. Technol. 73, 173–183 (2018)

    Article  Google Scholar 

  9. Yang, J., Yin, D., Cheng, Q., Shen, L.: Two-layered mechanism of online unmanned aerial vehicle conflict detection and resolution. IEEE Trans. Intell. Transp. Syst. 19(10), 3230–3244 (2018)

    Article  Google Scholar 

  10. Fu, Y., Zhang, Y., Yu, X.: An advanced sense and collision avoidance strategy for unmanned aerial vehicles in landing phasse. IEEE Aerosp. Electron. Syst. Mag. 31(9), 40–52 (2016)

    Article  Google Scholar 

  11. Zsedrovits, T., Bauer, P., Pencz, B.J.M., et al.: Onboard visual sense and avoid system for small aircraft. IEEE Aerosp. Electron. Syst. Mag. 31(9), 18–27 (2016)

    Article  Google Scholar 

  12. Seo, J., Kim, Y., Kim, S., Tsourdos, A.: Collision Avoidance Strategies for Unmanned Aerial Vehicles in Formation Flight. IEEE Trans. Aerosp. Electron. Syst. 53(6), 2718–2734 (2017)

    Article  Google Scholar 

  13. Park, J., Cho, N., Lee, S.: Reactive Collision Avoidance Algorithm for UAV Using Bounding Tube Against Multiple Moving Obstacles. IEEE Access. 8, 218131–218144 (2020)

    Article  Google Scholar 

  14. Liu, Z.: An Autonomous Quadrotor Avoiding a Helicoper in Low-Altitude Flights. IEEE Aerosp. Electron. Syst. Mag. 31(9), 30–39 (2016)

    Article  Google Scholar 

  15. Chakrarthy, A., Ghose, D.: Obstacle Avoidance in a Dynamic Environment: A Collision Cone Approach. IEEE. Trans. Syst, Man, Cybern. 28(5), 562–574 (1998)

    Article  Google Scholar 

  16. Zhang, N., Gai, W., Zhong, M., Zhang, J.: A fast finite-time convergent guidance law with nonlinear disturbance observer for unmanned aerial vehicle collision avoidance. Aerosp. Sci. Technol. 86, 204–214 (2019)

    Article  Google Scholar 

  17. Tan, C.Y., Huang, S., Tan, K.K., Teo, R.S.H.: Three dimensional collision avoidance for multi unmanned aerial vehicles using velocity obstacle. J. Int. Robot. Syst. 97, 227–248 (2020)

    Article  Google Scholar 

  18. Mahjri, I., Dhraief, A., Belghith, AlMogren, A., A. S: SLIDE: A Straight Line Conflict Detection and Alerting Algorithm for Multiple Unmanned Aerial Vehicles. IEEE. Trans. Mob. Comput. 17(5), 1190–1203 (2018)

    Article  Google Scholar 

  19. Introduction to TCAS II Version 7.1, U. S. Department of Transportation, Federal Aviation Administration. https://skybrary.aero/sites/default/files/bookshelf/3340.pdf. (2011). Accessed 16 Feb 2021 

  20. Hendrickson, A.: An investigation of alerting and prioritization criteria for sense and avoid (SAA). U.S ARMY RDECOM Technical Report RDMR-TM-13–01. https://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/02071111485.html. (2013). Accessed 16 Nov 2021 

  21. Zhang, H.H., Gan, X.S., Li, A., et al.: UAV obstacle avoidance and track reconvery strategy based on velocity obstacle method. Syst. Eng. Electron. 42(8), 1294–1302 (2020)

    Google Scholar 

  22. Goss, J., Rajvanshi, R., Subbarao, K.: Aircraft conflict detection and resolution using mixed geometric and collision cone approaches. in: AIAA Guid., Navigat., Control Conf. Exhib., pp. 4879(2004). https://doi.org/10.2514/6.2004.4879.

  23. Bouadi, H. S., Cunha, S., Drouin, A., Mora-Camino, F.: Adaptive Sliding Mode Control for Quadrotor Attitude Stabilization and Altitude Tracking. In: 12th IEEE International Symposium on Computation Intelligence and Informatics, pp. 449–455, 21–22. Budapest, Hungary (2011)

  24. Ofodile, N.A., Turner, M.C.: Anti-windup desige for input-coupled double intergrator systems with application to quadortor UAV’s. Eur. J. Control. 38, 22–31 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Burggraf, P., Martiez, A.R.P., Roth, H., Wagner, J.: Quadrotor in factory applications: design and implementation of the quadrotor’s P-PID cascade control system. SN Appl. Sci. 1, 722 (2019)

    Article  Google Scholar 

  26. Cedro, L., Wieczorkowski, K.: Optimizing PID controller gains to model the performance of quadcopter. Transportation Research Procedia. 40, 156–169 (2019)

    Article  Google Scholar 

  27. 3DR Solo Smart Drone. http://3drobotics.com/patents/solo-dronc. Accessed 1 April 2010 

Download references

Acknowledgements

This paper was supported by the Natural Science Foundation of Jilin Province, China under Grants 20210101171JC; the National Natural Science Foundation of China under Grants 61571462.

Funding

This research was supported by the Natural Science Foundation of Jilin Province, China under Grants 20210101171JC; the National Natural Science Foundation of China under Grants 61571462. But, it did not receive any funding from the commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

A) Jianwu Tao contributes the main ideas in this research, and proposes the effective conflict detection and alerting principle and the reactive collision avoidance and trajectory recovery strategy (RCATRS). B) Wei-chao Ji participates partly the design of safety controller in this research. C) Qiong-jian Fan participates partly the Numerical simulation in this research.

Corresponding author

Correspondence to Jian-wu Tao.

Ethics declarations

Conflicts of interest/Competing interests

on behalf of all authors, the corresponding auther states that there is no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent that this article is pulicated in Journal of Intelligent & Robotic Systems.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection on Unmanned Systems

Appendices

Appendix A

By inserting the Eq. (17) into the Eq. (7), we have

$$\begin{array}{c}{x}_{a}\left({t}_{e}\right)={v}_{ab}\left({t}_{0}\right)\mathrm{sin}\left(\gamma \right)\frac{{v}_{ab}\left({t}_{0}\right)\mathrm{sin }\left({\theta }_{h}-\gamma \right)}{{a}_{h}}+\frac{1}{2}{a}_{h}\mathrm{cos}\left({\theta }_{h}\right){\left(\frac{{v}_{ab}\left({t}_{0}\right)\mathrm{sin }\left({\theta }_{h}-\gamma \right)}{{a}_{h}}\right)}^{2}\\ =\frac{{({v}_{ab}\left({t}_{0}\right))}^{2}}{2{a}_{h}}(2\mathrm{sin }\left(\gamma \right)\mathrm{sin }\left({\theta }_{h}-\gamma \right)+\mathrm{cos}\left({\theta }_{h}\right){\left(\mathrm{sin}\left({\theta }_{h}-\gamma \right)\right)}^{2})\end{array}$$
(54)

From the Eqs. (19) and (14), the Eq. (54) is written as

$${x}_{a}\left({t}_{e}\right)=\frac{{({v}_{ab}\left({t}_{0}\right))}^{2}}{2{a}_{h}}{\mathrm{cos}\left({\theta }_{h}\right)(\mathrm{sin }\left({\theta }_{c}\right))}^{2}=\frac{r}{{(\mathrm{sin }\left({\theta }_{c}\right))}^{2}}{\mathrm{cos}\left({\theta }_{h}\right)(\mathrm{sin }\left({\theta }_{c}\right))}^{2}=r\mathrm{cos}\left({\theta }_{h}\right)$$
(55)

By inserting the Eq. (17) into the Eq. (8), we have

$${y}_{a}\left({t}_{e}\right)={y}_{a}\left({t}_{0}\right)-{v}_{ab}\left({t}_{0}\right)\mathrm{cos }\left(\gamma \right)\frac{{v}_{ab}\left({t}_{0}\right)\mathrm{sin }\left({\theta }_{h}-\gamma \right)}{{a}_{h}}+\frac{1}{2}{a}_{h}\mathrm{sin}({\theta }_{h}){(\frac{{v}_{ab}\left({t}_{0}\right)\mathrm{sin }\left({\theta }_{h}-\gamma \right)}{{a}_{h}})}^{2}$$
(56)

where \({a}_{h}\) is given by Eq. (15) or (16). From Eq. (14), we have \(\frac{{{(v}_{ab}\left({t}_{0}\right))}^{2}}{{a}_{h}}=\frac{2r}{{(\mathrm{sin }\left({\theta }_{c}\right))}^{2}}\). Let \({y}_{a}\left({t}_{0}\right)={v}_{ab}\left({t}_{0}\right)\mathrm{cos }\left(\gamma \right){T}_{l}\), where \({T}_{l}=\sqrt{\frac{2r}{{a}_{max}}}\) if \({v}_{ab}\left({t}_{0}\right)>{v}_{T}\), and \({T}_{l}=\frac{2r}{{c}_{f}{V}_{ab}\left({t}_{0}\right)}\) if \({v}_{ab}\left({t}_{0}\right)\le {v}_{T}\). Thus, we have

$$\begin{array}{c}{y}_{a}\left({t}_{e}\right)=2r\mathrm{cos }\left(\gamma \right)\frac{(\mathrm{sin }\left({\theta }_{c}\right)-\mathrm{sin }\left({\theta }_{h}-\gamma \right))}{{(\mathrm{sin }\left({\theta }_{c}\right))}^{2}}+r\mathrm{sin}({\theta }_{h}){(\frac{\mathrm{sin }\left({\theta }_{h}-\gamma \right)}{\mathrm{sin }\left({\theta }_{c}\right)})}^{2}\\ =2r\mathrm{cos }\left(\gamma \right)\frac{(\mathrm{sin }\left({\theta }_{c}\right)-\mathrm{sin }\left({\theta }_{h}-\gamma \right))}{{(\mathrm{sin }\left({\theta }_{c}\right))}^{2}}-r\mathrm{sin}\left({\theta }_{h}\right)\frac{\left({\left(\mathrm{sin}\left({\theta }_{c}\right)\right)}^{2}-{\left(\mathrm{sin}\left({\theta }_{h}-\gamma \right)\right)}^{2}\right)}{{\left(\mathrm{sin}\left({\theta }_{c}\right)\right)}^{2}}+r\mathrm{sin}\left({\theta }_{h}\right)\\ =r\frac{\left(\mathrm{sin}\left({\theta }_{c}\right)-\mathrm{sin}\left({\theta }_{h}-\gamma \right)\right)}{{\left(\mathrm{sin}\left({\theta }_{c}\right)\right)}^{2}}(2\mathrm{cos }\left(\gamma \right)-\mathrm{sin}\left({\theta }_{h}\right)\left(\mathrm{sin}\left({\theta }_{c}\right)+\mathrm{sin}\left({\theta }_{h}-\gamma \right)\right))+r\mathrm{sin}\left({\theta }_{h}\right)\end{array}$$
(57)

Since \(\mathrm{sin}\left({\theta }_{c}\right)-\mathrm{sin}\left({\theta }_{h}-\gamma \right)\ge 0\), we have \({y}_{a}\left({t}_{e}\right)\ge r\mathrm{sin}({\theta }_{h})\) if the following equations are satisfied

$$2\mathrm{cos }\left(\gamma \right)-\mathrm{sin}\left({\theta }_{h}\right)\left(\mathrm{sin}\left({\theta }_{c}\right)+\mathrm{sin}\left({\theta }_{h}-\gamma \right)\right)\ge 0$$
(58)

Since \(\mathrm{cos }\left(\gamma \right)-\mathrm{sin}\left({\theta }_{h}\right)\mathrm{sin}\left({\theta }_{h}-\gamma \right)=\mathrm{cos}\left({\theta }_{h}\right)\mathrm{cos}\left({\theta }_{h}-\gamma \right)\), the Eq. (58) can be written as

$$\mathrm{cos }\left(\gamma \right)-\mathrm{sin}\left({\theta }_{h}\right)\mathrm{sin}\left({\theta }_{c}\right)+\mathrm{cos}\left({\theta }_{h}\right)\mathrm{cos}\left({\theta }_{h}-\gamma \right)\ge 0$$
(59)

Since \(\mathrm{cos }\left({\theta }_{c}+{\theta }_{h}\right)-\mathrm{cos}\left({\theta }_{h}\right)\mathrm{cos}\left({\theta }_{c}\right)=-\mathrm{sin}\left({\theta }_{h}\right)\mathrm{sin}\left({\theta }_{c}\right)\), the Eq. (59) can be written as

$$\mathrm{cos }\left(\gamma \right)+\mathrm{cos }\left({\theta }_{c}+{\theta }_{h}\right)-\mathrm{cos}\left({\theta }_{h}\right)\mathrm{cos}\left({\theta }_{c}\right)+\mathrm{cos}\left({\theta }_{h}\right)\mathrm{cos}\left({\theta }_{h}-\gamma \right)\ge 0$$
(60)

Since \(\mathrm{cos }\left(\gamma \right)+\mathrm{cos }\left({\theta }_{c}+{\theta }_{h}\right)=2\mathrm{cos }\left(\frac{{\theta }_{c}+{\theta }_{h}+\gamma }{2}\right)\mathrm{cos }\left(\frac{{\theta }_{c}+{\theta }_{h}-\gamma }{2}\right)\), the Eq. (60) can be written as

$$2\mathrm{cos }\left(\frac{{\theta }_{c}+{\theta }_{h}+\gamma }{2}\right)\mathrm{cos }\left(\frac{{\theta }_{c}+{\theta }_{h}-\gamma }{2}\right)-\mathrm{cos}\left({\theta }_{h}\right)(\mathrm{cos}\left({\theta }_{c}\right)-\mathrm{cos}\left({\theta }_{h}-\gamma \right))\ge 0$$
(61)

Since \(\mathrm{cos}\left({\theta }_{c}\right)-\mathrm{cos}\left({\theta }_{h}-\gamma \right)=-2\mathrm{sin }\left(\frac{{\theta }_{c}+{\theta }_{h}-\gamma }{2}\right)\mathrm{sin }\left(\frac{{\theta }_{c}-{\theta }_{h}+\gamma }{2}\right)\), the Eq. (61) can be written as

$$2\mathrm{cos }\left(\frac{{\theta }_{c}+{\theta }_{h}+\gamma }{2}\right)\mathrm{cos }\left(\frac{{\theta }_{c}+{\theta }_{h}-\gamma }{2}\right)+2\mathrm{cos}\left({\theta }_{h}\right)\mathrm{sin }\left(\frac{{\theta }_{c}+{\theta }_{h}-\gamma }{2}\right)\mathrm{sin }\left(\frac{{\theta }_{c}-{\theta }_{h}+\gamma }{2}\right)\ge 0$$
(62)

Since \(0\le {\theta }_{h}\le {\theta }_{c}+\gamma\), we have \({\theta }_{c}-{\theta }_{h}+\gamma \ge 0\). If \({\theta }_{c}+{\theta }_{h}+\gamma \le 180^\circ\), the Eq. (62) is satisfied. Thus, we have \({y}_{a}\left({t}_{e}\right)\ge r\mathrm{sin}({\theta }_{h})\).

Appendix B

B.1 the case of \({a}_{1}\le {a}_{max}\) and \({a}_{h}={a}_{1}\)

  1. 1)

    When \(t\in [0,{\Delta t}_{r1}]\), we have \((x_\alpha{(t_e\;+\;t))}^2\;+\;(y_\alpha{(t_e\;+\;t))}^2\;=\;(x_\alpha{(t_e))}^2\;+\;(y_\alpha{(t_e))}^2\;+\;\Delta r_1\;=\;r^2\;+\;\Delta r_1\) from Eqs. (23) and (24), where

    $$\begin{array}{c}{{\Delta {r}_{1}={(v}_{ab,y}\left({t}_{e}\right)t)}^{2}-{x}_{a}\left({t}_{e}\right){a}_{h}{t}^{2}{-2{y}_{a}\left({t}_{e}\right)v}_{ab,y}\left({t}_{e}\right)t+{2{x}_{a}\left({t}_{e}\right)v}_{ab,x}\left({t}_{e}\right)t+(v}_{ab,x}\left({t}_{e}\right){t-\frac{1}{2}{a}_{h}{t}^{2})}^{2}\\ ={t}^{2}\left({{v}_{ab,y}\left({t}_{e}\right)}^{2}-{x}_{a}\left({t}_{e}\right){a}_{h}\right)+2t\left({-{y}_{a}\left({t}_{e}\right)v}_{ab,y}\left({t}_{e}\right)+{{x}_{a}\left({t}_{e}\right)v}_{ab,x}\left({t}_{e}\right)\right)+{(v}_{ab,x}\left({t}_{e}\right){t-\frac{1}{2}{a}_{h}{t}^{2})}^{2}\end{array}$$
    (63)

Further, we have

$${t}^{2}\left({{v}_{ab,y}\left({t}_{e}\right)}^{2}-{x}_{a}\left({t}_{e}\right){a}_{h}\right)={t}^{2}\left({\left({v}_{ab}\left({t}_{0}\right){(\mathrm{cos }\left({\theta }_{c}\right))}^{2}\right)}^{2}-r\mathrm{cos}({\theta }_{c}){({V}_{ab}\left({t}_{0}\right)\mathrm{cos }\left({\theta }_{c}\right))}^{2}\mathrm{cos }\left({\theta }_{c}\right)/r\right)=0$$
(64)
$$2t({-{y}_{a}\left({t}_{e}\right)v}_{ab,y}\left({t}_{e}\right)+{{x}_{a}\left({t}_{e}\right)v}_{ab,x}\left({t}_{e}\right))=2t{v}_{ab}\left({t}_{0}\right)\mathrm{cos }\left({\theta }_{c}\right)r\left(\mathrm{cos}\left({\theta }_{c}\right)\mathrm{sin}\left({\theta }_{c}\right)-\mathrm{sin}\left({\theta }_{c}\right)\mathrm{cos}\left({\theta }_{c}\right)\right)=0$$
(65)
$${(v}_{ab,x}\left({t}_{e}\right){t-\frac{1}{2}{a}_{h}{t}^{2})}^{2}={v}_{ab,x}\left({t}_{e}\right){t}^{2}\left({v}_{ab,x}\left({t}_{e}\right)-{a}_{h}t\right)+{(\frac{1}{2}{a}_{h}{t}^{2})}^{2}={(\frac{1}{2}{a}_{h}{t}^{2})}^{2}$$
(66)

Thus, we obtain

$${{(x}_{a}\left({t}_{e}+t\right))}^{2}+{{(y}_{a}\left({t}_{e}+t\right))}^{2}{=r}^{2}+\Delta {r}_{1}{=r}^{2}+{(\frac{1}{2}{a}_{h}{t}^{2})}^{2}\ge {r}^{2}$$
(67)

where \(t\in [0,{\Delta t}_{r1}]\). When \(t={\Delta t}_{r1}\), we have

$${{(x}_{a}\left({t}_{r1}\right))}^{2}+{{(y}_{a}\left({t}_{r1}\right))}^{2}{=r}^{2}+{(\frac{1}{2}{a}_{h}{{\Delta t}_{r1}}^{2})}^{2}$$
(68)
  1. 2)

    When \(t\in [0,{\Delta t}_{r2}]\), we have \({{(x}_{a}\left({t}_{r1}+t\right))}^{2}+{{(y}_{a}\left({t}_{r1}+t\right))}^{2}={{(x}_{a}\left({t}_{r1}\right))}^{2}+{{(y}_{a}\left({t}_{r1}\right))}^{2}+\Delta {r}_{2}{=r}^{2}+{(\frac{1}{2}{a}_{h}{{\Delta t}_{r1}}^{2})}^{2}+\Delta {r}_{2}\) from Eqs. (27) and (28), where

    $$\begin{array}{c}{\Delta {r}_{2}={(v}_{ab,y}\left({t}_{e}\right)t)}^{2}-{x}_{a}\left({t}_{r1}\right){a}_{h}{t}^{2}{-2{y}_{a}\left({t}_{r1}\right)v}_{ab,y}\left({t}_{e}\right)t+({\frac{1}{2}{a}_{h}{t}^{2})}^{2}\\ ={t}^{2}\left({{v}_{ab,y}\left({t}_{e}\right)}^{2}-{x}_{a}\left({t}_{e}\right){a}_{h}\right)-{a}_{h}{t}^{2}\left({v}_{ab,x}\left({t}_{e}\right){\Delta t}_{r1}-\frac{1}{2}{a}_{h}{{\Delta t}_{r1}}^{2}\right)+{(\frac{1}{2}{a}_{h}{t}^{2})}^{2}\end{array}$$
    (69)

From (64), \({y}_{a}\left({t}_{r1}\right)=0\) and \({v}_{ab,x}\left({t}_{e}\right)={a}_{h}{\Delta t}_{r1}\), we have \(\Delta {r}_{2}=-\frac{1}{2}{a}_{h}{{\Delta t}_{r1}}^{2}{a}_{h}{t}^{2}+({\frac{1}{2}{a}_{h}{t}^{2})}^{2}\). Thus,

$${(\frac{1}{2}{a}_{h}{{\Delta t}_{r1}}^{2})}^{2}+\Delta {r}_{2}={(\frac{1}{2}{a}_{h}{{\Delta t}_{r1}}^{2})}^{2}-\frac{1}{2}{a}_{h}{{\Delta t}_{r1}}^{2}{a}_{h}{t}^{2}+({\frac{1}{2}{a}_{h}{t}^{2})}^{2}=\frac{1}{4}{a}_{h}{{{(\Delta t}_{r1}}^{2}-{t}^{2})}^{2}\ge 0$$
(70)

From (70), we have

$${{(x}_{a}\left({t}_{r1}+t\right))}^{2}+{{(y}_{a}\left({t}_{r1}+t\right))}^{2}{=r}^{2}+\frac{1}{4}{a}_{h}{{{(\Delta t}_{r1}}^{2}-{t}^{2})}^{2}\ge {r}^{2}$$
(71)

where \(t\in [0,{\Delta t}_{r2}]\). Since \({\Delta t}_{r2}={\Delta t}_{r1}\), we have

$${{(x}_{a}\left({t}_{r2}\right))}^{2}+{{(y}_{a}\left({t}_{r2}\right))}^{2}{=r}^{2}$$
(72)
  1. 3)

    When \(t\in [0,{\Delta t}_{r3}]\), we have \({{(x}_{a}\left({t}_{r2}+t\right))}^{2}+{{(y}_{a}\left({t}_{r2}+t\right))}^{2}={g}_{1}+{g}_{2}+{g}_{3}\) from Eqs. (31) and (32), where

    $${g}_{1}={\left({x}_{a}\left({t}_{r2}\right)-{v}_{ab,x}\left({t}_{r2}\right)t\right)}^{2}+{({y}_{a}\left({t}_{r2}\right)-{v}_{ab,y}\left({t}_{e}\right)t)}^{2}$$
    (73)
    $${g}_{2}={(\frac{1}{2}{a}_{h}{\mathrm{cos}\left({\theta }_{c}\right)t}^{2})}^{2}+{(\frac{1}{2}{a}_{h}{\mathrm{sin}\left({\theta }_{c}\right)t}^{2})}^{2}={(\frac{1}{2}{a}_{h}{t}^{2})}^{2}$$
    (74)
    $${g}_{3}={({x}_{a}\left({t}_{r2}\right)-{v}_{ab,x}\left({t}_{r2}\right)t){a}_{h}{\mathrm{cos}\left({\theta }_{c}\right)t}^{2}-(y}_{a}\left({t}_{r2}\right)-{v}_{ab,y}\left({t}_{e}\right)t){a}_{h}{\mathrm{sin}\left({\theta }_{c}\right)t}^{2}$$
    (75)

Since \({x}_{a}\left({t}_{r2}\right)={x}_{a}\left({t}_{e}\right)\), \({y}_{a}\left({t}_{r2}\right)={-y}_{a}\left({t}_{e}\right)\) and \({v}_{ab,x}\left({t}_{r2}\right)={v}_{ab,x}\left({t}_{e}\right)\), we have \({\left({x}_{a}\left({t}_{r2}\right)\right)}^{2}+{({y}_{a}\left({t}_{r2}\right))}^{2}={r}^{2}\); \({{x}_{a}\left({t}_{r2}\right){v}_{ab,x}\left({t}_{r2}\right)+y}_{a}\left({t}_{r2}\right){v}_{ab,y}\left({t}_{e}\right)=0\); \({\left({v}_{ab,x}\left({t}_{r2}\right)t\right)}^{2}+{({v}_{ab,y}\left({t}_{e}\right)t)}^{2}={({v}_{ab}\left({t}_{0}\right)t)}^{2}\). Thus,

$${g}_{1}={r}^{2}+{({v}_{ab}\left({t}_{0}\right)t)}^{2}$$
(76)

Similarly, we have \({{x}_{a}\left({t}_{r2}\right)\mathrm{cos}\left({\theta }_{c}\right)-y}_{a}\left({t}_{r2}\right)\mathrm{sin}\left({\theta }_{c}\right)=r\) and \(-{v}_{ab,x}\left({t}_{r2}\right)\mathrm{cos}\left({\theta }_{c}\right)+{v}_{ab,y}\left({t}_{e}\right)\mathrm{sin}\left({\theta }_{c}\right)=0\). Thus,

$${g}_{3}=r{a}_{h}{t}^{2}$$
(77)

From (74), (76) and (77), we have

$${{(x}_{a}\left({t}_{r2}+t\right))}^{2}+{{(y}_{a}\left({t}_{r2}+t\right))}^{2}{=r}^{2}+{({v}_{ab}\left({t}_{0}\right)t)}^{2}+{(\frac{1}{2}{a}_{h}{t}^{2})}^{2}+r{a}_{h}{t}^{2}\ge {r}^{2}$$
(78)

where \(t\in [0,{\Delta t}_{r3}]\). From (67), (71) and (78), \({{(x}_{a}\left(t\right))}^{2}+{{(y}_{a}\left(t\right))}^{2}\ge {r}^{2}\) is obtained where \(t\in [{t}_{e},{t}_{r3}]\).

B.2 the case of \({a}_{1}>{a}_{max}\) and \({a}_{h}={a}_{max}\)

  1. 1)

    When \(t\in [0,{\Delta t}_{r1}]\), we have \({{(x}_{a}\left({t}_{e}+t\right))}^{2}+{{(y}_{a}\left({t}_{e}+t\right))}^{2}={{(x}_{a}\left({t}_{e}\right))}^{2}+{{(y}_{a}\left({t}_{e}\right))}^{2}+\Delta {r}_{1}{=r}^{2}+\Delta {r}_{1}\), where \(\Delta {r}_{1}\) is given by (B1). From (B2), we have \({{v}_{ab,y}\left({t}_{e}\right)}^{2}={x}_{a}\left({t}_{e}\right){a}_{h}\). Since \({a}_{1}>{a}_{max}\), we have \({{v}_{ab,y}\left({t}_{e}\right)}^{2}={x}_{a}\left({t}_{e}\right){a}_{1}>{x}_{a}\left({t}_{e}\right){a}_{max}\). Further, we have \({t}^{2}\left({{v}_{ab,y}\left({t}_{e}\right)}^{2}-{x}_{a}\left({t}_{e}\right){a}_{max}\right)\ge 0\). From (B3) and (B4), we have

    $$\Delta {r}_{1}={t}^{2}\left({{v}_{ab,y}\left({t}_{e}\right)}^{2}-{x}_{a}\left({t}_{e}\right){a}_{max}\right)+{(\frac{1}{2}{a}_{max}{t}^{2})}^{2}\ge 0$$
    (81)

Thus, we obtain

$${{(x}_{a}\left({t}_{e}+t\right))}^{2}+{{(y}_{a}\left({t}_{e}+t\right))}^{2}{=r}^{2}+\Delta {r}_{1}\ge {r}^{2}$$
(82)
  1. 2)

    When\(t\in [0,{\Delta t}_{r2}]\), we have \({{(x}_{a}\left({t}_{r1}+t\right))}^{2}+{{(y}_{a}\left({t}_{r1}+t\right))}^{2}={{(x}_{a}\left({t}_{r1}\right))}^{2}+{{(y}_{a}\left({t}_{r1}\right))}^{2}+\Delta {r}_{2}\), where \(\Delta {r}_{2}\) is given by (B7). From \({y}_{a}\left({t}_{r1}\right)<0\) and\({v}_{ab,x}\left({t}_{e}\right)={a}_{max}{\Delta t}_{r1}\), we have

    $$\Delta {r}_{2}={t}^{2}\left({{v}_{ab,y}\left({t}_{e}\right)}^{2}-{x}_{a}\left({t}_{e}\right){a}_{max}\right)+{2\left|{y}_{a}\left({t}_{r1}\right)\right|v}_{ab,y}\left({t}_{e}\right)t-\frac{1}{2}{a}_{max}{{\Delta t}_{r1}}^{2}{a}_{max}{t}^{2}+({\frac{1}{2}{a}_{max}{t}^{2})}^{2}$$
    (83)

Since \({{(x}_{a}\left({t}_{r1}\right))}^{2}+{{(y}_{a}\left({t}_{r1}\right))}^{2}{=r}^{2}+\Delta {r}_{1}{|}_{{\Delta t}_{r1}}\), where \(\Delta {r}_{1}{|}_{{\Delta t}_{r1}}\) is given by (B17) at \(t={\Delta t}_{r1}\), we have

$$\Delta {r}_{1}{|}_{{\Delta t}_{r1}}+\Delta {r}_{2}={(t}^{2}+{{\Delta t}_{r1}}^{2})\left({{v}_{ab,y}\left({t}_{e}\right)}^{2}-{x}_{a}\left({t}_{e}\right){a}_{max}\right)+{2\left|{y}_{a}\left({t}_{r1}\right)\right|v}_{ab,y}\left({t}_{e}\right)t+\frac{1}{4}{a}_{max}{{{(\Delta t}_{r1}}^{2}-{t}^{2})}^{2}$$
(84)

Since \({{(v}_{ab,y}\left({t}_{e}\right)}^{2}-{x}_{a}\left({t}_{e}\right){a}_{max})>0\), we have \(\Delta {r}_{1}{|}_{{\Delta t}_{r1}}+\Delta {r}_{2}>0\). Thus, we obtain

$${{(x}_{a}\left({t}_{r1}+t\right))}^{2}+{{(y}_{a}\left({t}_{r1}+t\right))}^{2}{=r}^{2}+\Delta {r}_{1}{|}_{{\Delta t}_{r1}}+\Delta {r}_{2}>{r}^{2}$$
(85)
  1. 3)

    When \(t\in [0,{\Delta t}_{r3}]\), we have \({{(x}_{a}\left({t}_{r2}+t\right))}^{2}+{{(y}_{a}\left({t}_{r2}+t\right))}^{2}={{(x}_{a}\left({t}_{r2}\right))}^{2}+{{(y}_{a}\left({t}_{r2}\right))}^{2}+\Delta {r}_{3}\) from Eqs. (37) and (38), where

    $${\Delta {r}_{3}={(v}_{ab,y}\left({t}_{e}\right)t)}^{2}{-2{y}_{a}\left({t}_{r2}\right)v}_{ab,y}\left({t}_{e}\right)t+{2x}_{a}\left({t}_{r2}\right){v}_{ab,x}\left({t}_{r2}\right)t+{x}_{a}\left({t}_{r2}\right){a}_{max}{t}^{2}+({v}_{ab,x}\left({t}_{r2}\right)t+{\frac{1}{2}{a}_{max}{t}^{2})}^{2}$$
    (86)

Next, we demonstrate \(\Delta {r}_{3}\ge 0\). First, we demonstrate\({-2{y}_{a}\left({t}_{r2}\right)v}_{ab,y}\left({t}_{e}\right)t+{2x}_{a}\left({t}_{r2}\right){v}_{ab,x}\left({t}_{r2}\right)t\ge 0\). From (25), (28), \({y}_{a}\left({t}_{r1}\right)<0\) and\({x}_{a}\left({t}_{r2}\right)={x}_{a}\left({t}_{r1}\right)/2\), we have

$$\begin{array}{c}{{k}_{1}=-{2y}_{a}\left({t}_{r2}\right)v}_{ab,y}\left({t}_{e}\right)+{2x}_{a}\left({t}_{r2}\right){v}_{ab,x}\left({t}_{r2}\right)=-{x}_{a}\left({t}_{r1}\right){a}_{max}\Delta {t}_{r2}{-2{y}_{a}\left({t}_{r1}\right)v}_{ab,y}\left({t}_{e}\right)+2{{(v}_{ab,y}\left({t}_{e}\right))}^{2}{\Delta t}_{r2}\\ =\left(2{{(v}_{ab,y}\left({t}_{e}\right))}^{2}-{x}_{a}\left({t}_{r1}\right){a}_{max}\right)\Delta {t}_{r2}+{2\left|{y}_{a}\left({t}_{r1}\right)\right|v}_{ab,y}\left({t}_{e}\right)\end{array}$$
(87)

From (21) and (23), we have \({k}_{2}=2{{(v}_{ab,y}\left({t}_{e}\right))}^{2}-{x}_{a}\left({t}_{r1}\right){a}_{max}={{(v}_{ab,y}\left({t}_{e}\right))}^{2}-{x}_{a}\left({t}_{e}\right){a}_{max}+{{(v}_{ab,y}\left({t}_{e}\right))}^{2}-\frac{1}{2}{{(v}_{ab,x}\left({t}_{e}\right))}^{2}\). Let \({{{k}_{3}=(v}_{ab,y}\left({t}_{e}\right))}^{2}-\frac{1}{2}{{(v}_{ab,x}\left({t}_{e}\right))}^{2}={{(v}_{ab}\left({t}_{0}\right)\mathrm{cos }\left({\theta }_{c}\right))}^{2}({\left(\mathrm{cos}\left({\theta }_{c}\right)\right)}^{2}-\frac{1}{2}{\left(\mathrm{sin}\left({\theta }_{c}\right)\right)}^{2})\). Further, let

$${k}_{4}={\left(\mathrm{cos}\left({\theta }_{c}\right)\right)}^{2}-\frac{1}{2}{\left(\mathrm{sin}\left({\theta }_{c}\right)\right)}^{2}=1-\frac{3}{2}{\left(\mathrm{sin}\left({\theta }_{c}\right)\right)}^{2}$$
(88)

When \({a}_{1}>{a}_{max}\), we have

$${a}_{1}=\frac{{({v}_{ab}\left({t}_{0}\right)\mathrm{cos }\left({\theta }_{c}\right))}^{2}\mathrm{cos}\left({\theta }_{c}\right)}{r}>{a}_{max}=\frac{{({v}_{ab}\left({t}_{0}\right)\mathrm{sin }\left({\theta }_{c}\right))}^{2}}{2r}$$
(89)

By solving (89), we obtain \({\theta }_{c}\le {48}^{^\circ }\) if \({a}_{1}>{a}_{max}\). When \({\theta }_{c}\le {48}^{^\circ }\), thus, we have \({k}_{4}>0\Rightarrow {k}_{3}>0\). Since \({{(v}_{ab,y}\left({t}_{e}\right))}^{2}-{x}_{a}\left({t}_{e}\right){a}_{max}>0\), we have \({k}_{2}>0\Rightarrow {k}_{1}>0\). Since all components in (B22) are not less than zero, \(\Delta {r}_{3}\ge 0\). From (85), we have

$${{(x}_{a}\left({t}_{r2}+t\right))}^{2}+{{(y}_{a}\left({t}_{r2}+t\right))}^{2}={{(x}_{a}\left({t}_{r2}\right))}^{2}+{{(y}_{a}\left({t}_{r2}\right))}^{2}+\Delta {r}_{3}>{r}^{2}$$
(90)

From (82), (85) and (90), \({{(x}_{a}\left(t\right))}^{2}+{{(y}_{a}\left(t\right))}^{2}\ge {r}^{2}\) is obtained where \(t\in [{t}_{e},{t}_{r3}]\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Jw., Ji, Wc. & Fan, Qj. An Effective Approach of Collision Avoidance for UAV. J Intell Robot Syst 108, 18 (2023). https://doi.org/10.1007/s10846-023-01869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01869-4

Keywords

Navigation