Skip to main content
Log in

Robot Dynamics Modeling with a Novel Friction Model and Extracted Feasible Parameters Using Constrained Differential Evolution

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Focusing on the problem of extracting a set of feasible parameters to characterize the standard Newton-Euler (SN-E) dynamics model of robots, as an alternative to the linear matrix inequalities framework, a composite multiobjective differential evolution (MODE) algorithm based on the constraints of the linear combination vector inferred from the dynamic variables and the physical characteristics of the rigid links is proposed to recover feasible parameters from the estimated set of basic inertial parameters. In order to solve the challenge of difficult population evolution caused by complex feasible regions, the trial vector generation strategy for convergence is implemented through the elaborately combination of feasibility rule and \(\varepsilon \) constrained method. In addition, the peak deviation of prediction of the classical viscous-coulomb (Vis-Cou) friction model during the robot joint inversion has thus far remained an open question, which is addressed by a specially developed improved model based on the viscous-arctan function. The proposed solutions have been validated with a set of experiments on a six degree-of-freedom (DOF) robot. The experiment results show that the established SN-E model tracks the actual torque effectively, and compared with the classical friction model, the optimized model reduces the deviation of the predicted torque by 22.1% while the peak error is effectively eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code availability

The code that supports the findings of this article is available from the corresponding author upon reasonable request.

References

  1. Song, X., Zhao, Y., Chen, C., Zhang, L., Lu, X.: A PD Computed Torque Control Method with Online Self-gain Tuning for a 3UPS-PS Parallel Robot. Robotica 39(9), 1575–1587 (2021). https://doi.org/10.1017/S0263574720001368

    Article  Google Scholar 

  2. Wang, Y., Liu, L., Chen, J., Ju, F., Chen, B., Wu, H.: Practical robust control of cable-driven robots with feedforward compensation. Adv. Eng. Software. 145, (2020) https://doi.org/10.1016/j.advengsoft.2020.102801

  3. Zhang, Z., Chen, Z.: Modeling and Control of Robotic Manipulators Based on Symbolic Regression. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3106648

    Article  Google Scholar 

  4. Xiao, J., Zeng, F., Zhang, Q., Liu, H.: Research on the forcefree control of cooperative robots based on dynamic parameters identification. Ind. Robot. 46(4), 499–509 (2019). https://doi.org/10.1108/IR-01-2019-0007

    Article  Google Scholar 

  5. Yang, C., Jiang, Y., He, W., Na, J., Li, Z., Xu, B.: Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Trans. Ind. Electron. 65(10), 8112–8123 (2018). https://doi.org/10.1109/TIE.2018.2803773

    Article  Google Scholar 

  6. Tu, X., Zhao, P., Zhou, Y.F.: Parameter Identification of Static Friction Based on An Optimal Exciting Trajectory. IOP Conference Series: Materials Science and Engineering. 280(1), (2017) https://doi.org/10.1088/1757-899X/280/1/012025

  7. Bingul, Zafer, Karahan, Ouzhan: Dynamic identification of Staubli RX-60 robot using PSO and LS methods. Expert Syst. Appl. 38(4), 4136–4149 (2011). https://doi.org/10.1016/j.eswa.2010.09.076

    Article  Google Scholar 

  8. Gaz, C., Flacco, F., De Luca, A.: Extracting feasible robot parameters from dynamic coefficients using nonlinear optimization methods. Proceedings - IEEE Int. Conf. Robot. Autom. 2016, 2075–2081 (2016) https://doi.org/10.1109/ICRA.2016.7487356

  9. Sousa, Cristovao D. and Cortesao, Rui.: Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach. Int. J. Robot. Res. 33(6), 931–944 (2014) https://doi.org/10.1177/0278364913514870

  10. Gaz, Claudio and Cognetti, Marco and Oliva, Alexander and Giordano, Paolo Robuffo and de Luca, Alessandro: Dynamic identification of the Franka Emika Panda Robot with retrieval of feasible parameters using penalty-based optimization. IEEE Robot. Autom. Lett. 4(4), 4147–4154 (2019) https://doi.org/10.1109/LRA.2019.2931248

  11. Wensing, P.M., Kim, Sangbae and Slotine, J.J.E.: Linear Matrix Inequalities for Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the Mass Distribution. IEEE Robot. Autom. Lett. 3(1), 60–67 (2018) https://doi.org/10.1109/LRA.2017.2729659

  12. Zhang, Libin and Wang, Jiacai and Chen, Jiaoliao and Chen, Kang and Lin, Bangyang and Xu, Fang.: Dynamic modeling for a 6-DOF robot manipulator based on a centrosymmetric static friction model and whale genetic optimization algorithm. Adv. Eng. Softw. 135, (2019) https://doi.org/10.1016/j.advengsoft.2019.05.006

  13. Wang, S., Shao, X., Yang, L., Liu, N.: Deep Learning Aided Dynamic Parameter Identification of 6-DOF Robot Manipulators. IEEE Access. 8, 138102–138116 (2020). https://doi.org/10.1109/ACCESS.2020.3012196

    Article  Google Scholar 

  14. Dong, J., Xu, J., Zhou, Q., Zhu, J., Yu, L..: Dynamic Identification of Industrial Robot Based on Nonlinear Friction Model and LS-SOS Algorithm. IEEE Trans. Instrum. Meas. 70, (2021) https://doi.org/10.1109/TIM.2021.3124039

  15. Yao, J., Deng, W., Jiao, Z.: Adaptive control of hydraulic actuators with LuGre model-based friction compensation. IEEE Trans. Ind. Electron. 62(10), 6469–6477 (2015). https://doi.org/10.1109/TIE.2015.2423660

    Article  Google Scholar 

  16. Jin, L., Li, S., Luo, X., Li, Y., Qin, B.: Neural Dynamics for Cooperative Control of Redundant Robot Manipulators. IEEE Trans. Ind. Inform. 14(9), 3812–3821 (2018). https://doi.org/10.1109/TII.2018.2789438

    Article  Google Scholar 

  17. Gautier, Maxime and Janot, Alexandre and Vandanjon, Pierre-Olivier.: A new closed-loop output error method for parameter identification of robot dynamics. IEEE Trans. Control Syst. Technol. 21(2), 428–444, (2013) https://doi.org/10.1109/TCST.2012.2185697

  18. Lee, T., Lee, B.D., Park, F.C.: Optimal excitation trajectories for mechanical systems identification. Automatica. 131, (2021) https://doi.org/10.1016/j.automatica.2021.109773

  19. Perrusquia, A., Garrido, R., Yu, W.: Stable robot manipulator parameter identification: A closed-loop input error approach. Automatica. 141, (2022) https://doi.org/10.1016/j.automatica.2022.110294

  20. Ali, I.M., Essam, D., Kasmarik, K.: Novel binary differential evolution algorithm for knapsack problems. Inf. Sci. 542, 177–194 (2021). https://doi.org/10.1016/j.ins.2020.07.013

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011). https://doi.org/10.1109/TEVC.2010.2087271

    Article  Google Scholar 

  22. Monfared, M.S., Monabbati, S.E., Kafshgar, A.R..: Pareto-optimal equilibrium points in non-cooperative multi-objective optimization problems. Expert Syst. Appl. 178, (2021) https://doi.org/10.1016/j.eswa.2021.114995

  23. Zhang, K., Zhu, J., Zhang, Y., Huang, Q.: Optimization method for linear constraint problems. J. Comput. Sci. 51, (2021) https://doi.org/10.1016/j.jocs.2021.101315

  24. Wang, B.C., Li, H.X., Li, J.P., Wang, Y.: Composite Differential Evolution for Constrained Evolutionary Optimization. IEEE Trans. Syst., Man, Cybernetics: Syst. 49(7), 1482–1495 (2019) https://doi.org/10.1109/TSMC.2018.2807785

  25. Mohammadrezaei Nodeh, S. and Mozaffari, A. and Ghaneh, M. and Bakhtiarinejad, F.: Fabrication of a resonant PEMC sensor using hybrid -constraint lexicographical ranking DE-MSBA with Jacobean approximation. Memetic Comput. 10(2), 209–231 (2018) https://doi.org/10.1007/s12293-017-0235-4

  26. Balaman, Sebnem Yilmaz.: Investment planning and strategic management of sustainable systems for clean power generation: An -constraint based multi objective modelling approach. J. Clean. Prod. 137, 1179–1190 (2016) https://doi.org/10.1016/j.jclepro.2016.07.202

  27. Wu, Jun and Wang, Jinsong and You, Zheng.: An overview of dynamic parameter identification of robots. Robot. Comput. Integr. Manuf. 26(5), 414–419 (2010) https://doi.org/10.1016/j.rcim.2010.03.013

  28. Afrough, Mohsen and Hanieh, Ahmed Abu.: Identification of Dynamic Parameters and Friction Coefficients: of a Robot with Planar Serial Kinemtic Linkage. J. Intell. Robot Syst: Theory Appl. 94(1), 3–13 (2019) https://doi.org/10.1007/s10846-018-0778-8

  29. Yao, Jianyong and Jiao, Zongxia and Ma, Dawei.: RISE-based precision motion control of DC motors with continuous friction compensation. IEEE Trans. Ind. Electron. 61(12), 7067–7075 (2014) https://doi.org/10.1109/TIE.2014.2321344

  30. Wang, H.: Adaptive Control of Robot Manipulators with Uncertain Kinematics and Dynamics. IEEE Trans. Autom. Control. 62(2), 948–954 (2017). https://doi.org/10.1109/TAC.2016.2575827

    Article  MathSciNet  MATH  Google Scholar 

  31. Farrage, A., Uchiyama, N.: Improvement of motion accuracy and energy consumption of a mechanical feed drive system using a Fourier series-based nonlinear friction model. Int. J. Adv. Manuf. Technol. 99(5–8), 1203–1214 (2018). https://doi.org/10.1007/s00170-018-2413-z

    Article  Google Scholar 

  32. Yin, F.W. and Tian, W.J. and Liu, H.T. and Huang, T. and Chetwynd, D.G.: A screw theory based approach to determining the identifiable parameters for calibration of parallel manipulators. Mech. Mach. Theory. 145, (2020) https://doi.org/10.1016/j.mechmachtheory.2019.103665

  33. Jin, J., Gans, N.: Parameter identification for industrial robots with a fast and robust trajectory design approach. Robot. Comput. Integr. Manuf. 31(1), 21–29 (2015). https://doi.org/10.1016/j.rcim.2014.06.004

    Article  Google Scholar 

  34. Kolyubin, S., Shiriaev, A., Jubien, A.: Consistent kinematics and dynamics calibration of lightweight redundant industrial manipulators. Int. J. Adv. Manuf. Technol. 101(1–4), 243–259 (2019). https://doi.org/10.1007/s00170-018-2868-y

    Article  Google Scholar 

  35. Scalera, L., Giusti, A., Vidoni, R., Gasparetto, A.: Enhancing fluency and productivity in human-robot collaboration through online scaling of dynamic safety zones. Int. J. Adv. Manuf. Technol. 121(9–10), 6783–6798 (2022). https://doi.org/10.1007/s00170-022-09781-1

    Article  Google Scholar 

  36. Kolyubin, S., Shiriaev, A., Jubien, A.: Consistent kinematics and dynamics calibration of lightweight redundant industrial manipulators. Int. J. Adv. Manuf. Technol. 101(1–4), 243–259 (2019). https://doi.org/10.1007/s00170-018-2868-y

    Article  Google Scholar 

  37. Nedic, N., Vladimir, S., Vladimir, D.: Optimal control of hydraulically driven parallel robot platform based on firefly algorithm. Nonlinear Dyn. 82(3), 1457–1473 (2015). https://doi.org/10.1007/s11071-015-2252-5

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhou, C., Tao, H., Chen, Y., Stojanovic, V., Paszke, W.: Robust point-to-point iterative learning control for constrained systems: A minimum energy approach. Int. J. Robust Nonlinear Control. 32(18), 10139–10161 (2022). https://doi.org/10.1002/rnc.6354

    Article  MathSciNet  Google Scholar 

  39. Jiang, Y., Gao, W., Na, J., Zhang, D., Hämäläinen, T.T., Stojanovic, V., Lewis, F.L.: Value iteration and adaptive optimal output regulation with assured convergence rate. Control Eng. Pract. 121,(2022). https://doi.org/10.1016/j.conengprac.2021.105042

  40. Janot, A., Wensing, P.M.: Sequential semidefinite optimization for physically and statistically consistent robot identification. Control Eng. Pract. 107, (2021). https://doi.org/10.1016/j.conengprac.2020.104699

  41. Ali, I.M., Essam, D., Kasmarik, K.: Novel binary differential evolution algorithm for knapsack problems. Inf. Sci. 542, 177–194 (2021). https://doi.org/10.1016/j.ins.2020.07.013

    Article  MathSciNet  MATH  Google Scholar 

  42. Wu, P., Xu, L, D’Ariano, A., Zhao, Y, Chu, C.: Novel formulations and improved differential evolution algorithm for optimal lane reservation with task merging. IEEE Trans. Intell. Transp. Syst. 23(11), 21329–21344 (2022) https://doi.org/10.1109/TITS.2022.3175010

  43. Deb, A., Roy, J.S., Gupta, B.: Performance comparison of differential evolution, particle swarm optimization and genetic algorithm in the design of circularly polarized microstrip antennas. IEEE Trans. Antennas Propag. 62(8), 3920–3928 (2014). https://doi.org/10.1109/TAP.2014.2322880

    Article  MATH  Google Scholar 

  44. Nodeh, S Mohammadrezaei and Mozaffari, A and Ghaneh, M and Bakhtiarinejad, F.: Fabrication of a resonant PEMC sensor using hybrid \(\varepsilon \)-constraint lexicographical ranking DE-MSBA with Jacobean approximation. Memetic Comput. 2(10), 209–231 (2017) https://doi.org/10.1007/s12293-017-0235-4

Download references

Funding

The research was supported by the National Key R &D Program of China (Grant No. 2018YFC2001700) and Beijing Natural Science Foundation (No. L192005).

Author information

Authors and Affiliations

Authors

Contributions

Xingmao, Shao: Conceptualization, Methodology, Writing-Original Draft; Lun Xie: Methodology, Supervision; Chiqin Li and Yingjie Li: Data collection, Validation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lun Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, X., Xie, L., Li, C. et al. Robot Dynamics Modeling with a Novel Friction Model and Extracted Feasible Parameters Using Constrained Differential Evolution. J Intell Robot Syst 108, 5 (2023). https://doi.org/10.1007/s10846-023-01862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01862-x

Keywords

Navigation