Skip to main content
Log in

Design of a Decentralized Strategy for Layered Self-Assembly of 3D Structures Using Robotic Blocks

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In self-assembly tasks, local interactions between robotic structure parts induce a collective behaviour that guides the robots to assume a desired shape. In this work, we propose a self-assembly strategy for building three-dimensional structures using robotic blocks. The assembly is executed layer-by-layer, and each layer grows from a single position called seed position. The robots follow a set of pre-programmed behaviours to perform the assembly task. Moreover, each robot is only capable of local sensing and empty positions in the structure are not known a priori. Robots carry a blueprint of the structure, containing relative coordinates for where blocks should be placed. A graph is extrapolated from the blueprint and used to define the structural properties necessary to analyze correctness and efficiency of the proposed technique. Simulated results show that the distance that robots travelled during assembly is likely to be the shortest path possible. Also, graph-based metrics are applied to evaluate the selection of different seed positions, drawing a relationship between structure blueprint and the distance travelled by the robots. Finally, physical experiments demonstrate the applicability of the proposed algorithms in realistic scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabral, K.M., Givigi, S.N., Santos, D.S.R.B., Jardine, P.T.: Design of a self-assembly system of three-dimensional structures using autonomous construction blocks. In: 2019 IEEE International Systems Conference (Syscon), pp. 1–8 (2019), https://doi.org/10.1109/SYSCON.2019.8836938

  2. Klavins, E.: Programmable self-assembly. IEEE Control. Syst. Mag. 27(4), 43–56 (2007). https://doi.org/10.1109/MCS.2007.384126

    Article  MathSciNet  Google Scholar 

  3. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014). https://doi.org/10.1126/science.1254295

    Article  Google Scholar 

  4. Gauci, M., Nagpal, R., Rubenstein, M.: . In: Groß, R., Kolling, A., Berman, S., Frazzoli, E., Martinoli, A., Matsuno, F., Gauci, M. (eds.) Programmable Self-disassembly for Shape Formation in Large-Scale Robot Collectives, pp 573–586. Springer, Cham (2018), https://doi.org/10.1007/978-3-319-73008-0_40

  5. Medellin, H., Corney, J.R., Davies, J.B.C., Lim, T., Ritchie, J.M.: Octree-based production of near net shape components. IEEE Trans. Autom. Sci. Eng. 5(3), 457–466 (2008). https://doi.org/10.1109/TASE.2007.912059

    Article  Google Scholar 

  6. Werfel, J., Nagpal, R.: Three-dimensional construction with mobile robots and modular blocks. Int. J. Robot. Res. 27(3-4), 463–479 (2008)

    Article  Google Scholar 

  7. Magueta, M.P.B., Santos, S.R.B.D., Cappabianco, F.A.M., Givigi, S.N.: Designing collective behavior for construction of containment structures using actuated blocks. In: 2020 IEEE International Systems Conference (Syscon), pp. 1–8 (2020), https://doi.org/10.1109/SysCon47679.2020.9275866

  8. Szwaykowska, K., Romero, L.M.-Y.-T., Schwartz, I.B.: Collective motions of heterogeneous swarms. IEEE Trans. Autom. Sci. Eng. 12(3), 810–818 (2015). https://doi.org/10.1109/TASE.2015.2403253

  9. Paulos, J., Eckenstein, N., Tosun, T., Seo, J., Davey, J., Greco, J., Kumar, V., Yim, M.: Automated self-assembly of large maritime structures by a team of robotic boats. IEEE Trans. Autom. Sci. Eng. 12(3), 958–968 (2015). https://doi.org/10.1109/TASE.2015.2416678 . Accessed 21 Oct 2018

    Article  Google Scholar 

  10. Petersen, K.H., Napp, N., Stuart-Smith, R., Rus, D., Kovac, M.: A review of collective robotic construction. Sci. Robot. 4(28), 8479 (2019)

    Article  Google Scholar 

  11. Lindsey, Q., Mellinger, D., Kumar, V.: Construction with quadrotor teams. Auton. Robot. 33(3), 323–336 (2012). https://doi.org/10.1007/s10514-012-9305-0. Accessed 09 Oct 2018

    Article  Google Scholar 

  12. Willmann, J., Augugliaro, F., Cadalbert, T., D’Andrea, R., Gramazio, F., Kohler, M.: Aerial robotic construction towards a new field of architectural research. Int. J. Architect. Comput. 10(3), 439–459 (2012). https://doi.org/10.1260/1478-0771.10.3.439. Accessed 21 Oct 2018

    Article  Google Scholar 

  13. Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M.W., Willmann, J.S., Gramazio, F., Kohler, M., D’Andrea, R.: The flight assembled architecture installation: Cooperative construction with flying machines. IEEE Control. Syst. Mag. 34(4), 46–64 (2014). https://doi.org/10.1109/MCS.2014.2320359

    Article  MathSciNet  Google Scholar 

  14. Barros dos Santos, S.R., Givigi, S., Nascimento, C.L., Fernandes, J.M., Buonocore, L., de Almeida Neto, A.: Iterative decentralized planning for collective construction tasks with quadrotors. J. Intell. Robot. Syst. 90(1), 217–234 (2018). https://doi.org/10.1007/s10846-017-0659-6

    Article  Google Scholar 

  15. Alejo, D., Cobano, J.A., Heredia, G., Ollero, A.: Collision-free 4d trajectory planning in unmanned aerial vehicles for assembly and structure construction. J. Intell. Robot. Syst. 73(1), 783–795 (2014)

    Article  Google Scholar 

  16. Nottensteiner, K., Sachtler, A., Albu-Schäffer, A.: Towards autonomous robotic assembly: Using combined visual and tactile sensing for adaptive task execution. J. Intell. Robot. Syst. 101(3), 1–22 (2021)

    Article  Google Scholar 

  17. Magnenat, S., Philippsen, R., Mondada, F.: Autonomous construction using scarce resources in unknown environments. Auton. Robot. 33(4), 467–485 (2012). https://doi.org/10.1007/s10514-012-9296-x

    Article  Google Scholar 

  18. Barros dos Santos, S.R., Dantas, D.O., Givigi, S.N., Buonocore, L., Neto, A.A., Nascimento, C.L.: A stochastic learning approach for construction of brick structures with a ground robot. IFAC-PapersOnLine 50(1), 5654–5659 (2017). https://doi.org/10.1016/j.ifacol.2017.08.1114 . 20th IFAC World Congress

    Article  Google Scholar 

  19. Zhang, Y., Koga, Y., Balkcom, D.: Interlocking block assembly with robots. IEEE Trans. Autom. Sci. Eng. 18(3), 902–916 (2021). https://doi.org/10.1109/TASE.2021.3069742

    Article  Google Scholar 

  20. dos Santos, S.R.B., Givigi, S.N., Nascimento, C.L.: Autonomous construction of multiple structures using learning automata: Description and experimental validation. IEEE Syst. J. 9(4), 1376–1387 (2015)

    Article  Google Scholar 

  21. Santos, S.R.B.D., Júnior, C.L.N., Givigi, S.N.: Planning and learning for cooperative construction task with quadrotors. In: 2014 IEEE International Systems Conference Proceedings, pp. 57–64 (2014), https://doi.org/10.1109/SysCon.2014.6819236

  22. Cabral, K.M., Givigi, S.N., Jardine, P.T.: Autonomous assembly of structures using pinning control and formation algorithms. In: 2020 IEEE International Systems Conference (Syscon), pp. 1–7 (2020), https://doi.org/10.1109/SysCon47679.2020.9275901

  23. Zeravcic, Z., Brenner, M.P.: Spontaneous emergence of catalytic cycles with colloidal spheres. Proc. Natl. Acad. Sci. 114(17), 4342–4347 (2017). https://www.pnas.org/content/114/17/4342.full.pdf. https://doi.org/10.1073/pnas.1611959114

    Article  Google Scholar 

  24. Hormoz, S., Brenner, M.P.: Design principles for self-assembly with short-range interactions. Proc. Natl. Acad. Sci. 108(13), 5193–5198 (2011)

    Article  Google Scholar 

  25. Li, H., Wang, T., Wei, H., Meng, C.: Response strategy to environmental cues for modular robots with self-assembly from swarm to articulated robots. J. Intell. Robot. Syst. 81(3), 359–376 (2016)

    Article  Google Scholar 

  26. Ahmadzadeh, H., Masehian, E., Asadpour, M.: Modular robotic systems: Characteristics and applications. J. Intell. Robot. Syst. 81(3), 317–357 (2016)

    Article  Google Scholar 

  27. Fu, J., Lv, Y., Wen, G., Yu, X.: Local measurement based formation navigation of nonholonomic robots with globally bounded inputs and collision avoidance. IEEE Trans. Netw. Sci. Eng. 8(3), 2342–2354 (2021). https://doi.org/10.1109/TNSE.2021.3089833

    Article  MathSciNet  Google Scholar 

  28. Coppola, M., Guo, J., Gill, E., de Croon, G.C.: Provable self-organizing pattern formation by a swarm of robots with limited knowledge. Swarm Intell. 13(1), 59–94 (2019)

    Article  Google Scholar 

  29. Li, H., Wang, T., Chirikjian, G.S.: Self-assembly planning of a shape by regular modular robots. In: Advances in Reconfigurable Mechanisms and Robots II, pp. 867–877. Springer (2016)

  30. Dutta, A., Dasgupta, P., Nelson, C.: Distributed configuration formation with modular robots using (sub) graph isomorphism-based approach. Auton. Robot. 43(4), 837–857 (2019)

    Article  Google Scholar 

  31. Thangavelu, V., Liu, Y., Saboia, M., Napp, N.: Dry stacking for automated construction with irregular objects. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp 4782–4789. IEEE (2018)

  32. Yue, Z., Lian, B., Tang, C., Tong, K.: A novel adaptive federated filter for GNSS/INS/VO integrated navigation system. Meas. Sci. Technol. 31(8), 085102 (2020). https://doi.org/10.1088/1361-6501/ab78c2

    Article  Google Scholar 

  33. Wang, D., O’Keefe, K., Petovello, M.: Decentralized cooperative positioning for vehicle-to-vehicle (v2v) application using gps integrated with uwb range. In: Proceedings of the ION 2013 Pacific PNT Meeting, pp. 793–803 (2013)

  34. Gómez-Casasola, A., Rodríguez-Cortés, H.: Sensor fusion for quadrotor autonomous navigation. In: 2020 American Control Conference (ACC), pp. 5219–5224. IEEE (2020)

  35. Seo, J., Yim, M., Kumar, V.: Assembly planning for planar structures of a brick wall pattern with rectangular modular robots. In: 2013 IEEE International Conference on Automation Science and Engineering (CASE), pp. 1016–1021. IEEE. https://doi.org/10.1109/CoASE.2013.6653996. Accessed 20 Oct 2018 (2013)

  36. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  37. Hales, T.C.: The Jordan curve theorem, formally and informally. Am. Math. Mon. 114(10), 882–894 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nozari, E., Pasqualetti, F., Cortés, J.: Heterogeneity of central nodes explains the benefits of time-varying control scheduling in complex dynamical networks. Journal of Complex Networks. https://doi.org/10.1093/comnet/cnz001 (2019)

  39. Pasqualetti, F., Zampieri, S., Bullo, F.: Controllability metrics, limitations and algorithms for complex networks. IEEE Trans. Control Netw. Syst. 1(1), 40–52 (2014). https://doi.org/10.1109/TCNS.2014.2310254

    Article  MathSciNet  MATH  Google Scholar 

  40. Cortesi, F.L., Summers, T.H., Lygeros, J.: Submodularity of energy related controllability metrics. In: 53rd IEEE Conference on Decision and Control, pp. 2883–2888. IEEE (2014)

  41. Saldana, D., Gabrich, B., Li, G., Yim, M., Kumar, V.: Modquad: The flying modular structure that self-assembles in midair. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 691–698. IEEE (2018)

  42. Silano, G., Aucone, E., Iannelli, L.: Crazys: A software-in-the-loop platform for the Crazyflie 2.0 Nano-Quadcopter. In: 2018 26Th Mediterranean Conference on Control and Automation (MED), pp. 1–6 (2018), https://doi.org/10.1109/MED.2018.8442759

  43. Baker, S., Matthews, I.: Lucas-kanade 20 years on: a unifying framework. Int. J. Comput. Vision 56(3), 221–255 (2004)

    Article  MATH  Google Scholar 

Download references

Funding

This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada through a grant held by Dr. Sidney Givigi under the Discovery Grant Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work conception and design. Material preparation and data collection were performed by Dr. Kléber Cabral and Dr. Jean-Alexis Delamer. Analysis and proofs were performed by Dr. Kléber Cabral, Mr. Tanvir Kaykobad, Dr. Jardine and Dr. Givigi. The first draft of the manuscript was written by Dr. Kléber Cabral and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sidney Givigi.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent to publish

Not applicable

Conflict of Interests

Dr. Cabral, Mr. Kaykobad, Dr. Delamer, Dr. Jardine, and Dr. Givigi declare they have no financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral, K., Kaykobad, T., Delamer, JA. et al. Design of a Decentralized Strategy for Layered Self-Assembly of 3D Structures Using Robotic Blocks. J Intell Robot Syst 107, 54 (2023). https://doi.org/10.1007/s10846-023-01825-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01825-2

Keywords

Navigation