Skip to main content

Advertisement

Log in

Intelligent Path Planning Technologies of Underwater Vehicles: a Review

  • Review Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Underwater vehicles are important tools for marine resource exploration and exert important effects in civil and military fields. Path planning is an important part in the field of underwater vehicle control. At present, graph searching-type algorithms, sampling-based algorithms, and potential field-based algorithms have been widely used in the field of path planning. However, traditional methods exhibit poor adaptability to a dynamically unstructured environment. With the rapid development of artificial intelligence, artificial intelligence methods centering on machine learning have been gradually applied to the field of path planning and have shown advantages in terms of adaptability to an unstructured environment. The emphasis laid on the intelligent path planning technologies and the characteristics of these technologies or algorithms used in the present underwater vehicle path planning were introduced in detail in this work. The collaborative and coverage path planning technology of underwater vehicles were summarized. Aiming at the problems existing in current path planning of underwater vehicles, the final development direction of them is prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 100–107 (1968)

    Article  Google Scholar 

  3. Stentz, A.: The focussed D* algorithm for real-time replanning. In: Proceedings of the 14th international joint conference on Artificial intelligence, pp 1652–1659 (1995)

  4. Stentz, A.: Optimal and efficient path planning for partially-known environments. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp 3310–3317 (1994)

  5. Sethian, J.A.:Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press (1999)

  6. Arinaga, S., Nakajima, S., Okabe, H., Ono, A., Kanayama, Y.: A motion planning method for an AUV. In: Proceedings of Symposium on Autonomous Underwater Vehicle Technology, pp 477–484 (1996)

  7. Kirsanov, A., Anavatti, S.G., Ray, T.: Path Planning for the Autonomous Underwater Vehicle. In: 4th International Conference on Swarm, Evolutionary, and Memetic Computing (SEMCCO), SRM Univ, Chennai, INDIA, pp 476–486 (2013)

  8. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM. 5, 345 (1962)

    Article  Google Scholar 

  9. Garau, B., Alvarez, A., Oliver, G.: Path Planning of Autonomous Underwater Vehicles in Current Fields with Complex Spatial Variability: an A* Approach. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp 194–198 (2005)

  10. Zhang, W., Wei, S., Teng, Y., Yan, Z., Liu, X.: UUV Off-Line Path Planning Based on Improved A Algorithm. In: 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), pp 1–6 (2018)

  11. Koenig, S., Likhachev, M., Furcy, D.: Lifelong Planning A∗. Artif. Intell. 155, 93–146 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koenig, S., Likhachev, M.: D*lite. In: AAAI/IAAI (2002)

  13. Stentz, A.: CD*: A Real-time Resolution Optimal Re-planner for Globally Constrained Problems. In: AAAI/IAAI (2002)

  14. Gao, B., Xu, D., Zhang, F., Yan, W.: Method of designing optimal smooth way for vehicle. J. Syst. Simul. 22, 957–961 (2010)

    Google Scholar 

  15. Kimmel, R., Amir, A., Bruckstein, A.M.: Finding shortest paths on surfaces using level sets propagation. IEEE Trans. Pattern Anal. Mach. Intell. 17, 635–640 (1995)

    Article  Google Scholar 

  16. Yu, H., Wang, Y.: Multi-objective AUV Path Planning in Large Complex Battlefield Environments. In: Proceedings of the 7th International Symposium on Computational Intelligence and Design (ISCID), pp 345-348 (2014)

  17. Elbanhawi, M., Simic, M.: Sampling-based robot motion planning: a review. IEEE Access. 2, 56–77 (2014)

    Article  Google Scholar 

  18. Geraerts, R., Overmars, M.H.: A comparative study of probabilistic roadmap planners. Algorithmic Foundations of Robotics V, Springer, pp 43-57 (2004)

  19. McMahon, J., Plaku, E.: Mission and motion planning for autonomous underwater vehicles operating in spatially and temporally complex environments. IEEE J. Oceanic Eng. 41, 893–912 (2016)

    Article  Google Scholar 

  20. Lavalle, S.: Rapidly-Exploring Random Trees: A New Tool for Path Planning. The annual research report (1998)

  21. Poppinga, J., Birk, A., Pathak, K., Vaskevicius, N.: Fast 6-DOF path planning for Autonomous Underwater Vehicles (AUV) based on 3D plane mapping. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, pp 345–350 (2011)

  22. Cui, R., Li, Y., Yan, W.: Mutual information-based multi-AUV path planning for scalar field sampling using multidimensional RRT*. IEEE Trans. Syst. Man Cybern.: Syst. 46, 993–1004 (2016)

    Article  Google Scholar 

  23. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of the 1985 IEEE International Conference on Robotics and Automation, pp 500–505 (1985)

  24. Khosla, P., Volpe, R.: Superquadric artificial potentials for obstacle avoidance and approach. In: Proceedings of the 1988 IEEE International Conference on Robotics and Automation, pp 1778–1784 (1988)

  25. Sato, K.: Deadlock-free motion planning using the Laplace potential field. Adv. Rob. 7, 449–461 (1992)

    Article  Google Scholar 

  26. Borenstein, J., Koren, Y.: Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man Cybern. 19, 1179–1187 (1989)

    Article  Google Scholar 

  27. Ding, F.-g., Jiao, P., Bian, X.-q., Wang, H.-j.: AUV local path planning based on virtual potential field. In: IEEE International Conference Mechatronics and Automation,  pp 1711–1716 (2005)

  28. Jiao, P., Wang, H.-J., Ding, F.-G.: Local Path Planning Method for Autonomous Underwater Vehicle Based on Virtual Field Force. Shipbuilding of China. 01, 76-81 (2007)

  29. Wang, J., Sun, Y., Liu, Z., Yang, P., Lin, T.: Route Planning based on Floyd Algorithm for Intelligence Transportation System. In: 2007 IEEE International Conference on Integration Technology, pp 544–546 (2007)

  30. Tan, G., Zou, J., Zhuang, J., Wan, L., Sun, H., Sun, Z.: Fast marching square method based intelligent navigation of the unmanned surface vehicle swarm in restricted waters. Appl. Ocean Res. 95, 102018 (2020)

    Article  Google Scholar 

  31. Zhang, Z., Wu, D., Gu, J., Li, F.: A path-planning strategy for unmanned surface vehicles based on an adaptive hybrid dynamic stepsize and target attractive force-RRT algorithm. J. Mar. Sci. Eng. 7, 132 (2019)

    Article  Google Scholar 

  32. Taheri, E., Ferdowsi, M.H., Danesh, M.: Closed-loop randomized kinodynamic path planning for an autonomous underwater vehicle. Appl. Ocean Res. 83, 48–64 (2019)

    Article  Google Scholar 

  33. Chen, P., Shen, P., Zhang, P., Li, Y., Ma, T., Han, Y.: Path planning of underwater terrain-aided navigation based on improved artificial potential field method. Mar. Technol. Soc. J. 53, 65–74 (2019)

    Article  Google Scholar 

  34. Kirkpatrick, S., Gelatt Jr, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

  35. Gu, G.C., Fu, Y., Liu, H.B.: Path planning of AUV based on genetic simulated annealing algorithm. J. Harbin Eng. Univ. 26, 84–87 (2005)

    Google Scholar 

  36. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4, 23–33 (1997)

    Article  Google Scholar 

  37. Brock, O., Khatib, O.: High-speed navigation using the global dynamic window approach. In: International Conference on Robotics and Automation (ICRA '99), Detroit, Mi, pp 341–346 (1999)

  38. Tusseyeva, I., Kim, S.-G., Kim, Y.-G.: 3D global dynamic window approach for navigation of autonomous underwater vehicles. Int. J. Fuzzy Log. Intell. Syst. 13, 91–99 (2013)

    Article  Google Scholar 

  39. Quinlan, S., Khatib, O.: Elastic bands - connecting path planning and control. In: 1993 IEEE International Conference on Robotics and Automation, Atlanta, Ga, pp 802–807 (1993)

  40. Fan, Z.: Path planning method based on the algorithm of PSO and elastic rope for underwater vehicle in three-dimensional space. M.S. thesis, Harbin Engineering University, China (2013)

  41. Gerke, M.: Genetic path planning for mobile robots. In: Proceedings of the 1999 American Control Conference, pp 2424–2429 (1999)

  42. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1, 53–66 (1997)

    Article  Google Scholar 

  43. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp 39–43 (1995)

  44. Cheng, C., Sha, Q., He, B., Li, G.: Path planning and obstacle avoidance for AUV: a review. Ocean Eng. 235, 109355 (2021)

    Article  Google Scholar 

  45. Chen, G., Shen, L.: Genetic path planning algorithm for complex environment path planning. Robot. 23, 40–44 (2001)

    Google Scholar 

  46. Li, X., Huo, Y., Zeng, Q., Xu, Y.: A Mutation Operator Ant Colony Algorithm to Three - Dimensional Path Planning of Robots. Computer Simulation. 32, 364–368,394 (2015)

  47. Wen, Z.-W., Cai, W.-J., Yang, C.-W.: Three-dimensional path planning method based on improved ant colony algorithm for UUV. J. Unmanned Undersea Syst. 24, 120–125 (2016)

    Google Scholar 

  48. Kennedy, J.: Particle Swarm Optimization. Encyclopedia of Machine Learning, pp 760–766 (2010)

  49. Yan, Z.P., Deng, C., Sun, H.T., Chi, D.N.: Competition particle swarm optimization and its application in UUV path planning. Transaction of Beijing Institute of Technology. 34, 813–818 (2014)

  50. Zeng, Z., Lammas, A., Sammut, K., He, F., Tang, Y., Ji, Q.: Path planning for rendezvous of multiple AUVs operating in a variable ocean. In: The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, pp 451–456 (2014)

  51. Zeng, Z., Sammut, K., Lian, L., He, F., Lammas, A., Tang, Y.: A comparison of optimization techniques for AUV path planning in environments with ocean currents. Rob. Auton. Syst. 82, 61–72 (2016)

    Article  Google Scholar 

  52. Yang, X.S., Suash, D.: Cuckoo Search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp 210–214 (2009)

  53. Kumar, S.V., Jayaparvathy, R., Priyanka, B.N.: Efficient path planning of AUVs for container ship oil spill detection in coastal areas. Ocean Eng. 217, 107932 (2020)

  54. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008)

    Article  Google Scholar 

  55. Bhattacharjee, P., Rakshit, P., Goswami, I., Konar, A., Nagar, A.K.: Multi-robot path-planning using artificial bee colony optimization algorithm. In: 2011 Third World Congress on Nature and Biologically Inspired Computing, pp 219–224 (2011)

  56. Mao, Z., Liu, P., Ding, W., Hui, G.: An Improved Genetic Algorithm for Optimal Search Path of Unmanned Underwater Vehicles. In: 12th International Conference on Intelligent Robotics and Applications (ICIRA), Shenyang, PEOPLES R CHINA, pp 480–488 (2019)

  57. Guo, H., Mao, Z., Ding, W., Liu, P.: Optimal search path planning for unmanned surface vehicle based on an improved genetic algorithm. Comput. Electr. Eng. 79, 106467 (2019)

    Article  Google Scholar 

  58. Niu, H., Ji, Z., Savvaris, S., Tsourdos, A.: Energy efficient path planning for unmanned surface vehicle in spatially-temporally variant environment. Ocean Eng. 196, 106766 (2020)

    Article  Google Scholar 

  59. Zadeh, S.M., Yazdani, A.M., Sammut. K.,  Powers, D.M.W.: AUV rendezvous online path planning in a highly cluttered undersea environment using evolutionary algorithms. CoRR abs/1604.07002 (2016)

  60. MahmoudZadeh, S., Powers, D.M.W., Yazdani, A.M., Sammut, K., Atyabi, A.: Efficient AUV path planning in time-variant underwater environment using differential evolution algorithm. J. Mar. Sci. Appl. 17, 585–591 (2018)

    Article  Google Scholar 

  61. Xiong, C., Lu, D., Zeng, Z., Lian, L., Yu, C.: Path planning of multiple unmanned marine vehicles for adaptive ocean sampling using elite group-based evolutionary algorithms. J. Intell. Rob. Syst. 99, 875–889 (2020)

    Article  Google Scholar 

  62. Zhang, R., Li, J., Yang, Y.: AUV route planning study for obstacle avoidance task based on improved ant colony algorithm. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 43, 428–430 (2015)

    Google Scholar 

  63. Lin, C., Wang, H., Yuan, J., Fu, M.: An online path planning method based on hybrid quantum ant colony optimization for AUV. Int. J. Robot. Autom. 33, 435–444 (2018)

    Google Scholar 

  64. Ma, Y.N., Gong, Y.J., Xiao, C.F., Gao, Y., Zhang, J.: Path planning for autonomous underwater vehicles: an ant colony algorithm incorporating alarm pheromone. IEEE Trans. Veh. Technol. 68, 141–154 (2019)

    Article  Google Scholar 

  65. Yu, X., Chen, W.N., Gu, T., Yuan, H., Zhang, H., Zhang, J.: ACO-A*: ant colony optimization plus A* for 3-D traveling in environments with dense obstacles. IEEE Trans. Evol. Comput. 23, 617–631 (2019)

    Article  Google Scholar 

  66. Hu, C., Zhang, F.: Research on AUV Global Path Planning Based on Multi-Objective Ant Colony Strategy. In: 2019 Chinese Automation Congress (CAC), pp 5512–5517 (2019)

  67. Xiong, C., Chen, D., Lu, D., Zeng, Z., Lian, L.: Path planning of multiple autonomous marine vehicles for adaptive sampling using Voronoi-based ant colony optimization. Rob. Auton. Syst. 115, 90–103 (2019)

    Article  Google Scholar 

  68. Ma, Y., Hu, M., Yan, X.: Multi-objective path planning for unmanned surface vehicle with currents effects. ISA Trans. 75, 137–156 (2018)

    Article  Google Scholar 

  69. Xu, J., Gu, H., Liang, H.: Path planning for unmanned underwater vehicle based on improved particle swarm optimization method. Int. J. Online Eng. 14, 137–149 (2018)

    Article  Google Scholar 

  70. Zhou, W., Xing, Z., Bai, W., Deng, C., Xie, Y., Wu, X.: Route planning algorithm for autonomous underwater vehicles based on the hybrid of particle swarm optimization algorithm and radial basis function. Trans. Inst. Meas. Control. 41, 942–953 (2019)

    Article  Google Scholar 

  71. Yan, Z., Li, J., Wu, Y., Zhang, G.: A real-time path planning algorithm for AUV in unknown underwater environment based on combining PSO and waypoint guidance. Sensors 19, 20 (2019)

    Article  Google Scholar 

  72. Wu, J., Song, C., Fan, C., Hawbani, A., Zhao, L., Sun, X.: DENPSO: a distance evolution nonlinear PSO algorithm for energy-efficient path planning in 3D UASNs. IEEE Access. 7, 105514–105530 (2019)

    Article  Google Scholar 

  73. Lin, Y.-H., Huang, L.-C., Chen, S.-Y., Yu, C.-M.: The optimal route planning for inspection task of autonomous underwater vehicle composed of MOPSO-based dynamic routing algorithm in currents. Appl. Ocean Res. 75, 178–192 (2018)

    Article  Google Scholar 

  74. Panda, M., Das, B., Pati, B.B.: Grey Wolf Optimization for Global Path Planning of Autonomous Underwater Vehicle. In: 3rd International Conference on Advanced Informatics for Computing Research (ICAICR), Shimla, INDIA (2019)

  75. Panda, M., Das, B., Pati, B.B.: Global path planning for multiple AUVs using GWO. Arch. Control Sci. 30, 77–100 (2020)

    MathSciNet  MATH  Google Scholar 

  76. Panda, M., Das, B., Pati, B.B.: A hybrid approach for path planning of multiple AUVs. In: 1st International Conference on Innovation in Electrical Power Engineering, Communication, and Computing Technology (IEPCCT), Bhubaneswar, INDIA, pp 327–338 (2020)

  77. Li, B., Chiong, R., Gong, L.-g.: Search-evasion path planning for submarines using the artificial bee colony algorithm. In: IEEE Congress on Evolutionary Computation (CEC), Beijing, PEOPLES R CHINA, pp 528–535 (2014)

  78. Sheng, L., Bao, L., Wu, P.F.: Application of heuristic approaches in the robot path planning and optimization: a review. Electron. Opt. Control. 25, 58–64 (2018)

  79. Cuevas, E., Díaz Cortés, M.A., Oliva Navarro, D.A.: A swarm global optimization algorithm inspired in the behavior of the social-spider. In: Advances of Evolutionary Computation: Methods and Operators, pp 9–33 (2016)

  80. Jiang, X., Li, S.: BAS: Beetle antennae search algorithm for optimization problems. Int. J. Robot. Control. 1, (2017)

  81. Wu, Q., Lin, H., Jin, Y., Chen, Z., Li, S., Chen, D.: A new fallback beetle antennae search algorithm for path planning of mobile robots with collision-free capability. Soft. Comput. 24, 2369–2380 (2020)

    Article  Google Scholar 

  82. Wu, Q., Shen, X., Jin, Y., Chen, Z., Li, S., Khan, A.H., Chen, D.: Intelligent beetle antennae search for UAV sensing and avoidance of obstacles. Sensors 19, 1785 (2019)

    Google Scholar 

  83. Wang, T., Yang, L., Liu, Q.: Beetle swarm optimization algorithm: theory and application. Filomat 34, 5121–5137 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  84. Mu, Y., Li, B., An, D., Wei, Y.: Three-dimensional route planning based on the beetle swarm optimization algorithm. IEEE Access 7, 117804–117813 (2019)

    Article  Google Scholar 

  85. Miura, J.: Support vector path planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, PEOPLES R CHINA, pp 2894–2899 (2006)

  86. Deng, N., Dong, D., Li, Y.: A path smoothing design and simulation based on A* algorithm. Electr. Technol. Softw Eng. 167–168 (2016)

  87. Tennety, S., Sarkar, S., Hall, E.L., Kumar, M.: Support vector machines based mobile robot path planning in an unknown environment. In: Proceedings of the ASME 2009 Dynamic Systems and Control Conference (DSCC 2009), pp 395–401 (2009)

  88. Zhuge, C., Xu, J., Tang, Z.: A local path planning method based on support vector machine. J. Harbin Eng. Univ. 40, 323–330 (2019)

    MATH  Google Scholar 

  89. Charalampous, K., Kostavelis, I., Gasteratos, A.: Thorough robot navigation based on SVM local planning. Rob. Auton. Syst. 70, 166–180 (2015)

    Article  Google Scholar 

  90. Chen, Y., Zu, W., Fan, G., Chang, H.: Unmanned aircraft vehicle path planning based on SVM algorithm. Adv. Intell. Syst. Comput. 215, 705–714 (2014)

    Google Scholar 

  91. Qiao, S., Zheng, K., Chen, Y.: A path planning method for autonomous ships based on extended support vector machine. Ship Eng. 42, 130–137 (2020)

    Google Scholar 

  92. Morales, N., Toledo, J., Acosta, L.: Path planning using a multiclass support vector machine. Appl. Soft Comput. 43, 498–509 (2016)

    Article  Google Scholar 

  93. Zhu, D., Li, W., Yan, M., Yang, S.X.: The path planning of AUV based on D-S information fusion map building and bio-inspired neural network in unknown dynamic environment. Int. J. Adv. Rob. Syst. 11, 34 (2014)

    Article  Google Scholar 

  94. Zhu, D., Sun, B., Li, L.: Algorithm for AUVs 3-D path planning and safe obstacle avoidance based on biological inspired model. Control Decis. 30, 798–806 (2015)

    Google Scholar 

  95. Cao, X., Peng, J.: A potential field bio-inspired neural network control algorithm for AUV path planning. In: 2018 IEEE International Conference on Information and Automation (ICIA), pp 1427–1432 (2018)

  96. Zhu, T., Zhu, D., Yan, M.: Multiple underwater target search path planning based on GBNN. In: 12th International Conference on Intelligent Robotics and Applications (ICIRA), Shenyang, PEOPLES R CHINA, pp 225–232 (2019)

  97. Huang, S., Li, X., Zhang, Z., He, Z., Wu, F., Liu, W., Tang, J., Zhuang, Y.: Deep learning driven visual path prediction from a single image. IEEE Trans. Image Process. 25, 5892–5904 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  98. Hong, T.S., Nakhaeinia, D., Karasfi, B.: Application of fuzzy logic in mobile robot navigation. Fuzzy Logic - Controls, Concepts, Theories and Applications (2012)

  99. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. SMC3, 28–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  100. Li, W.: Fuzzy-logic-based reactive behavior control of an autonomous mobile system in unknown environments. Eng. Appl. Artif. Intell. 7, 521–531 (1994)

    Article  Google Scholar 

  101. Chang, H., Jin, T.: Command fusion based fuzzy controller design for moving obstacle avoidance of mobile robot. Lect. Notes Electr. Eng. 235, 905–913 (2013)

    Article  Google Scholar 

  102. Kanakakis, V., Valavanis, K.P., Tsourveloudis, N.C.: Fuzzy-logic based navigation of underwater vehicles. J. Intell. Rob. Syst. 40, 45–88 (2004)

    Article  Google Scholar 

  103. Yang, Y., Zhu, D.,: Research on dynamic path planning of AUV based on forward looking sonar and fuzzy control. In: 23rd Chinese Control and Decision Conference, Mianyang, PEOPLES R CHINA, pp 2425–2430 (2011)

  104. Sun, B., Zhu, D., Yang, S.X.: An optimized fuzzy control algorithm for three-dimensional AUV path planning. Int. J. Fuzzy Syst. 20, 597–610 (2018)

    Article  MathSciNet  Google Scholar 

  105. Beom, H.R., Cho, H.S.: A sensor-based navigation for a mobile robot using fuzzy-logic and reinforcement learning. IEEE Trans. Syst. Man Cybern. 25, 464–477 (1995)

    Article  Google Scholar 

  106. Zhuo, R., Chen, Z., Chen, C.: Navigation for mobile robots using reinforcement learning and fuzzy logic. Comput. Simul. 22, 157–162 (2005)

    Google Scholar 

  107. Yao, G.: AUV local path planning based on monocular vision. M.S. thesis, Harbin Engineering University, China (2018)

  108. Ran, X.: Research on AUV path planning method based on hierarchical reinforcement learning. M.S. thesis, Harbin Engineering University, China (2017)

  109. Cheng, Y., Zhang, W.: Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels. Neurocomputing 272, 63–73 (2018)

    Article  Google Scholar 

  110. Wang, C., Zhang, X., Zhang, J., Liu, S.: Method for intelligent obstacle avoidance decision-making of unmanned vessel in unknown waters. Chin. J. Ship Res. 13, 72–77 (2018)

    Google Scholar 

  111. Sun, Y., Ran, X., Zhang, G., Xu, H., Wang, X.: AUV 3D path planning based on the improved hierarchical deep Q network. J. Mar. Sci. Eng. 8, 145 (2020)

    Article  Google Scholar 

  112. Zhang, Q., Lin, J., Sha, Q., He, B., Li, G.: Deep interactive reinforcement learning for path following of autonomous underwater vehicle. IEEE Access. 8, 24258–24268 (2020)

    Article  Google Scholar 

  113. Xu, Y., Yao, Y.: Research on AUV global path planning considering ocean current. Shipbuilding of China 49, 109–114 (2008)

    Google Scholar 

  114. Pan, X., Wu, X., Hou, X., Feng, Y.: Global path planning based on genetic-ant hybrid algorithm for AUV. J. Huazhong Univ. Sci. Technol. Nat. Sci. 45, 45-49,76 (2017)

  115. Yu, W., She, H., Ouyang, Z.: Path planning of unmanned surface vehicle based on variable mesh improved genetic algorithm. J. Navig. China 41, 101–105 (2018)

    Google Scholar 

  116. Choset, H.: Coverage for robotics - a survey of recent results. Ann. Math. Artif. Intell. 31, 113–126 (2001)

    Article  MATH  Google Scholar 

  117. Balch, T.: The case for randomized search. In: Proceedings of Workshop on Sensors and Motion, IEEE International Conference on Robotics and Automation (2000)

  118. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Rob. Auton. Syst. 61, 1258–1276 (2013)

    Article  Google Scholar 

  119. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT press (2005)

  120. Choset, H., Pignon, P.: Coverage path planning: the boustrophedon cellular decomposition. In: Field and Service Robotics, pp. 203–209. Springer, London (1998)

    Chapter  Google Scholar 

  121. Acar, E.U., Choset, H., Rizzi, A.A., Atkar, P.N., Hull, D.: Morse decompositions for coverage tasks. Int. J. Rob. Res. 21, 331–344 (2002)

    Article  Google Scholar 

  122. Wong, S.C., MacDonald, B.A.: A topological coverage algorithm for mobile robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nv. pp 1685–1690 (2003)

  123. Butler, Z.J., Rizzi, A.A., Hollis, R.L.: Contact sensor-based coverage of rectilinear environments. In: Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics. pp 266–271 (1999)

  124. Galceran, E., Carreras, M.: Efficient seabed coverage path planning for ASVs and AUVs. In: 25th IEEE\RSJ International Conference on Intelligent Robots and Systems (IROS), Algarve, PORTUGAL, pp 88–93 (2012)

  125. Yan, M., Zhu, D.: An algorithm of complete coverage path planning for autonomous underwater vehicles. Key Engineering Materials. 467–469, 1377–1385 (2011)

  126. Paull, L., Saeedi, S., Li, H., Myers, V.: An information gain based adaptive path planning method for an autonomous underwater vehicle using sidescan sonar. In: 2010 IEEE International Conference on Automation Science and Engineering, pp 835–840 (2010)

  127. Paull, L., Saeedi, S., Seto, M., Li, H.: Sensor-driven online coverage planning for autonomous underwater vehicles.  IEEE/ASME Trans. Mechatron. 18, 1827–1838 (2013)

    Article  Google Scholar 

  128. Galceran, E., Carreras, M.: Planning coverage paths on bathymetric maps for in-detail inspection of the ocean floor. In: IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, GERMANY, pp 4159–4164 (2013)

  129. Zeng, Z., Lammas, A., Sammut, K., He, F.: Optimal path planning based on annular space decomposition for AUVs operating in a variable environment. In: IEEE/OES Autonomous Underwater Vehicles Conference (AUV), Southampton, ENGLAND (2012)

  130. Zeng, Z., Lammas, A., Sammut, K., He, F., Tang, Y.: Shell space decomposition based path planning for AUVs operating in a variable environment. Ocean Eng. 91, 181–195 (2014)

    Article  Google Scholar 

  131. Gan, W., Zhu, D.: Complete coverage belief function path planning algorithm of autonomous underwater vehicle based on behavior strategy. J. Syst. Simul. 30, 1857–1868 (2018)

    Google Scholar 

  132. Sun, B., Zhu, X., Zhang, W., Zhu, D., Chu, Z.: Three dimensional AUV complete coverage path planning with glasius bio-inspired neural network. In: 11th International Conference on Intelligent Robotics and Applications (ICIRA), pp 125–136 (2018)

  133. Zhu, D., Tian, C., Sun, B., Luo, C.: Complete coverage path planning of autonomous underwater vehicle based on GBNN algorithm. J. Intell. Rob. Syst. 94, 237–249 (2019)

    Article  Google Scholar 

  134. Sun, B., Zhu, D., Tian, C., Luo, C.: Complete coverage autonomous underwater vehicles path planning based on glasius bio-inspired neural network algorithm for discrete and centralized programming. IEEE Trans. Cognit. Dev. Syst. 11, 73–84 (2019)

    Article  Google Scholar 

  135. Cui, R., Yan, W., Xu, D.: Synchronization of multiple autonomous underwater vehicles without velocity measurements. Sci. China Inf. Sci. 55, 1693–1703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  136. Hernández J.D., Vallicrosa, G., Vidal, E., Pairet, È., Carreras, M., Ridao, P.: On-line 3D path planning for close-proximity surveying with AUVs. IFAC-PapersOnLine. 48, 50–55 (2015)

  137. Huang, H., Zhu, D., Ding, F.: Dynamic task assignment and path planning for multi-AUV system in variable ocean current environment. J. Intell. Rob. Syst. 74, 999–1012 (2014)

    Article  Google Scholar 

  138. Zhu, D., Huang, H., Yang, S.X.: Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace. IEEE Trans. Cybern. 43, 504–514 (2013)

    Article  Google Scholar 

  139. Cao, X., Zhu, D.: Multi-AUV underwater cooperative search algorithm based on biological inspired neurodynamics model and velocity synthesis. J. Navig. 68, 1075–1087 (2015)

    Article  Google Scholar 

  140. Zhu, D.-Q., Qu, Y., Yang, S.X.: Multi-AUV SOM task allocation algorithm considering initial orientation and ocean current environment. Front. Inf. Technol. Electron. Eng. 20, 330–341 (2019)

    Article  Google Scholar 

  141. Cao, X., Zhu, D.: Multi-AUV task assignment and path planning with ocean current based on biological inspired self-organizing map and velocity synthesis algorithm. Intell. Autom. Soft Comput. 23, 31–39 (2017)

    Article  Google Scholar 

  142. Zhu, D., Cao, X., Sun, B., Luo, C.: Biologically inspired self-organizing map applied to task assignment and path planning of an AUV system. IEEE Trans. Cognit. Dev. Syst. 10, 304–313 (2018)

    Article  Google Scholar 

  143. Chen, M., Zhu, D.: A workload balanced algorithm for task assignment and path planning of inhomogeneous autonomous underwater vehicle system. IEEE Trans. Cognit. Dev. Syst. 11, 483–493 (2019)

    Article  Google Scholar 

  144. Li, D., Hao, Y., Zhang, Z.: Multi-AUV cooperative path planning based on master-slave structure. Comput. Simul. 32, 382–387 (2015)

    Google Scholar 

  145. Liu, M., Xu, B., Peng, X.: Cooperative path planning for multi-AUV in time-varying ocean flows. J. Syst. Eng. Electron. 27, 612–618 (2016)

    Article  Google Scholar 

  146. Zhuang, Y., Huang, H., Sharma, S., Xu, D., Zhang, Q.: Cooperative path planning of multiple autonomous underwater vehicles operating in dynamic ocean environment. ISA Trans. 94, 174–186 (2019)

    Article  Google Scholar 

  147. Wu, Y., Su, X.-C., Cui, J.-P., Yang, G.: Coordinated path planning of USV&AUV for an underwater target. Control Decis. 36, 825–834 (2021)

    Google Scholar 

  148. Yang, Y., Wang, S., Wu, Z., Wang, Y.: Motion planning for multi-HUG formation in an environment with obstacles. Ocean Eng. 38, 2262–2269 (2011)

    Article  Google Scholar 

  149. Zhu, D., Zhou, B., Yang, S.X.: A novel algorithm of multi-AUVs task assignment and path planning based on biologically inspired neural network map. IEEE Trans. Intell. Veh. 6, 333–342 (2021)

    Article  Google Scholar 

  150. Hadi, B., Khosravi, A., Sarhadi, P.: A review of the path planning and formation control for multiple autonomous underwater vehicles. J. Intell. Robot. Syst. 101, 67 (2021)

  151. Zhao, R., Xu, J., Xiang, X., Xu, G.: A review of path planning and cooperative control for MAUV systems. Chin. J. Ship Res. 13, 58–65 (2018)

    Google Scholar 

  152. Shi, C., Lan, X., Wang, Y.: Motion planning for unmanned vehicle based on hybrid deep learning. In: International Conference on Security, Pattern Analysis, and Cybernetics, Shenzhen, PEOPLES R CHINA, pp 473–478 (2017)

  153. Tai, L., Li, S., Liu, M.: A deep-network solution towards model-less obstacle avoidance. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, SOUTH KOREA, pp 2759–2764 (2016)

  154. Pereira, A.A., Binney, J., Hollinger, G.A., Sukhatme, G.S.: Risk-aware path planning for autonomous underwater vehicles using predictive ocean models. J. Field Rob. 30, 741–762 (2013)

    Article  Google Scholar 

  155. Zeng, Z., Zhou, H., Lian, L.: Exploiting ocean energy for improved AUV persistent presence: path planning based on spatiotemporal current forecasts. J. Mar. Sci. Technol. 25, 26–47 (2020)

    Article  Google Scholar 

  156. Wang, H., Lyu, W., Yao, P., Liang, X., Liu, C.: Three-dimensional path planning for unmanned aerial vehicle based on interfered fluid dynamical system. Chin. J. Aeronaut. 28, 229–239 (2015)

  157. Yao, P., Wang, H., Su, Z.: UAV feasible path planning based on disturbed fluid and trajectory propagation. Chin. J. Aeronaut. 28, 1163–1177 (2015)

    Article  Google Scholar 

  158. Yao, P., Zhao, S.: Three-dimensional path planning for AUV based on interfered fluid dynamical system under ocean current (June 2018). IEEE Access 6, 42904–42916 (2018)

    Article  Google Scholar 

  159. Ataei, M., Yousefi-Koma, A.: Three-dimensional optimal path planning for waypoint guidance of an autonomous underwater vehicle. Rob. Auton. Syst. 67, 23–32 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by national key research and development program, the research on key technologies of intelligent model and precise control of aquaculture facilities under grant 2017YFD0701702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoguang Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, D., Mu, Y., Wang, Y. et al. Intelligent Path Planning Technologies of Underwater Vehicles: a Review. J Intell Robot Syst 107, 22 (2023). https://doi.org/10.1007/s10846-022-01794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01794-y

Keywords

Navigation