Skip to main content

Advertisement

Log in

Design and Experimental Evaluation of a Low Cost, Portable, 3-DOF Wrist Rehabilitation Robot with High Physical Human–Robot Interaction

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The success of the physical therapy and rehabilitation depends on mostly the continuity of the exercises. The best way to ensure this continuity is to perform the exercises at home instead of therapy centers. At present, many of the rehabilitation devices including robots are not available to use at homes due to their high costs. Considering this fact, a low-cost and portable wrist rehabilitation robot (POWROBOT) that can be used both at home and physical therapy centers is manufactured in this study. Thus, more patients will be able to access rehabilitation robots and continue their treatment in the comfort of their home. It is expected that there will be an acceleration in the recovery of physically disabled patients with the increase in the use of the proposed rehabilitation robot at home. Force measurements are obtained from force sensors which constitutes a significant part of the robot price in general. Therefore, a low cost three-degree-of-freedom practical force sensor unit is also manufactured for human–robot interaction during rehabilitation. Pronation/supination, radial/ulnar deviation and flexion/extension movement experiments are performed in order to illustrate performance of the proposed portable wrist rehabilitation robot. Passive, active-assistive and active exercise methods are used for all of these movements. Experiments are guided with a human–machine interface software and managed by a microcontroller with an embedded program. Finally, the results of the experiments are evaluated separately for each exercise type and, presented in figures and tables. These results reveal clearly the feasibility of the proposed robot according to manufacturing based design approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code or data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Chu, C.Y., Patterson, R.M.: Soft robotic devices for hand rehabilitation and assistance a narrative review. J. Neuroeng. Rehabil. 15(1), 9 (2018). https://doi.org/10.1186/s12984-018-0350-6

    Article  Google Scholar 

  2. OECD, Organization for Economic Co-operation and Development: Demography and Population, Population Statistics, Population Projections. https://stats.oecd.org/#. Accessed 15 July 2021

  3. Babaiasl, M., Mahdioun, S.H., Jaryani, P., Yazdani, M.: A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil. Rehabil. Assist. Technol. 11(4), 263–280 (2016). https://doi.org/10.3109/17483107.2014.1002539

    Article  Google Scholar 

  4. GBD 2016 Stroke Collaborators: Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. Neurol. 18(5), 439–458 (2016). https://doi.org/10.1016/S1474-4422(19)30034-1

  5. Katan, M., Luft, A.: Global burden of stroke. Semin. Neurol. 38(02), 208–211 (2018). https://doi.org/10.1055/s-0038-1649503

    Article  Google Scholar 

  6. Donkor E. S.: Stroke in the 21st Century: A Snapshot of the Burden. Epidemiol. Qual. Life. Stroke Res. Treat. 3238165, (2018). https://doi.org/10.1155/2018/3238165

  7. Noh, J.W., Kwon, Y.D., Park, J., Oh, I.H., Kim, J.: Relationship between physical disability and depression by gender: A panel regression model. PLoS ONE 11(11), 1–9 (2016). https://doi.org/10.1371/journal.pone.0166238

    Article  Google Scholar 

  8. Tough, H., Siegrist, J., Fekete, C.: Social relationships, mental health and wellbeing in physical disability: a systematic review. BMC Public Health 17, 414 (2017). https://doi.org/10.1186/s12889-017-4308-6

    Article  Google Scholar 

  9. Bolge, S.C., Goren, A., Tandon, N.: Reasons for discontinuation of subcutaneous biologic therapy in the treatment of rheumatoid arthritis: a patient perspective. Patient Prefer. Adherence 9, 121–131 (2015). https://doi.org/10.2147/PPA.S70834

    Article  Google Scholar 

  10. Pignolo, L.: Robotics in neuro-rehabilitation. J. Rehabil. Med. 41(12), 955–960 (2009). https://doi.org/10.2340/16501977-0434

    Article  Google Scholar 

  11. Eurostat: Healthcare personnel statistics - dentists, pharmacists and physiotherapists. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Healthcare_personnel_statistics_-_dentists,_pharmacists_and_physiotherapists#Healthcare_personnel. Accessed 10 September September 2022

  12. Charles, S.K.; Krebs, H.I.; Volpe, B.T.; Lynch, D.; Hogan, N.: Wrist Rehabilitation Following Stroke: Initial Clinical Results, IEEE 9th International Conference on Rehabilitation Robotics ICORR 2005, 13 – 16, Chicago, IL, USA (2005). https://doi.org/10.1109/ICORR.2005.1501040

  13. Gupta, A., O’Malley, M. K.: Robotic Exoskeletons for Upper Extremity Rehabilitation. In S. S. Kumnu, Rehabilitation Robotics, 371–396. Itech Education and Publishing (2007)

  14. Oña, E.D., Garcia-Haro, J.M., Jardón, A., Balaguer, C.: Robotics in health care perspectives of robot-aided interventions in clinical practice for rehabilitation of upper limbs. App. Sci. 9(2586) (2019. https://doi.org/10.3390/app9132586

  15. Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Arne, J.T., Leonhardt, S.: A survey on robotic devices for upper limb rehabilitation. J Neuro Eng Rehab 11(3), 1–29 (2014). https://doi.org/10.1186/1743-0003-11-3

    Article  Google Scholar 

  16. Gopura, R.A.R.C., Bandara, D.S.V., Kiguchi, K., Mann, G.K.I.: Developments in hardware systems of active upper-limb exoskeleton robots: A review. Robot Autonomous Syst 75(B), 203–20 (2016). https://doi.org/10.1016/j.robot.2015.10.001

    Article  Google Scholar 

  17. Proietti, T., Crocher, V., Roby-Brami, A., Jarrasse, N.: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE Rev. Biomed. Eng. 9, 4–14 (2016). https://doi.org/10.1109/RBME.2016.2552201

    Article  Google Scholar 

  18. Tyromotion: Amadeo Finger-Hand Rehabilitation. https://tyromotion.com/en/products/amadeo/. Accessed 01 August 2022

  19. Rehab-Robotics: Hand of Hope. http://www.rehab-robotics.com.hk/hoh/index.html. Accessed 01 August 2022

  20. Islam, Md.R., Spiewak, C., Rahman, M., Fareh, R.: A Brief Review on Robotic Exoskeletons for Upper Extremity Rehabilitation to Find the Gap between Research Porotype and Commercial Type. Adv Robot Automation 6(3), 1–12 (2017). https://doi.org/10.4172/2168-9695.1000177

    Article  Google Scholar 

  21. Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., Xie, S.: Recent development of mechanisms and control strategie for robot-assisted lower limb rehabilitation. Mechatronics 31, 132–145 (2015). https://doi.org/10.1016/j.mechatronics.2015.04.005

    Article  Google Scholar 

  22. Hussain, S., Jamwal, P.K., Van Vliet, P., Ghayesh, M.H.: State-of-the-art robotic devices for wrist rehabilitation: Design and control aspects. IEEE Transact Human-Machine Syst 50(5), 361–372 (2020). https://doi.org/10.1109/THMS.2020.2976905

    Article  Google Scholar 

  23. Oña, E.D., Cano-de la Cuerda, R., Sánchez-Herrera, P., Balaguer, C., Jardón, A.: A Review of Robotics in neurorehabilitation: Towards an automated process for upper limb. J. Health. Eng. 2018(9758939), 1–19 (2018). https://doi.org/10.1155/2018/9758939

  24. Koeneman, E.J., Schultz, R.S., Wolf, S.L., Herring, D.E., Koeneman, J.B.: A Pneumatic Muscle Hand Therapy Device. The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2711–13, San Francisco, CA, USA (2004). https://doi.org/10.1109/IEMBS.2004.1403777

  25. Allington, J., Spencer, S.J., Klein, J., Buell, M., Reinkensmeyer, D.J., Bobrow, J.: Supinator Extender (SUE): A Pneumatically Actuated Robot For Forearm/Wrist Rehabilitation After Stroke. 2011 Annual International Conference Of The IEEE Engineering In Medicine and Biology Society, 1579–82 (2011). https://doi.org/10.1109/IEMBS.2011.6090459

  26. Khor, K.X., Chin, P.J.H., Yeong, C.F., Su, E.L.M., Narayanan, A.L.T., Abdul Rahman, H., Khan, Q.I.: Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects. IEEE Trans Neural Syst Rehabil Eng 25(10), 1864–1873 (2017). https://doi.org/10.1109/tnsre.2017.2692520

    Article  Google Scholar 

  27. Lambelet, C., Lyu, M., Woolley, D., Gassert, R., Wenderoth, N.: The eWrist—A Wearable Wrist Exoskeleton With sEMG-Based Force Control For Stroke Rehabilitation. 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK (2017). https://doi.org/10.1109/ICORR.2017.8009334

  28. Zhang, L., Li, J., Cui, Y., Dong, M., Fang, B., Zhang, P.: Design and Performance Analysis of a Parallel Wrist Rehabilitation Robot (PWRR). Robot. Auton. Syst. 125, 103390 (2020). https://doi.org/10.1016/j.robot.2019.103390

    Article  Google Scholar 

  29. Rocon, E., Ruiz, A.F., Pons, J.L.: Biomechanical Modelling of The Upper Limb For Robotics-Based Orthotic Tremor Suppression. App Bion Biomechan 2(2), 81–85 (2005). https://doi.org/10.1533/abbi.2004.0038

    Article  Google Scholar 

  30. Guo, S., Gao, J., Guo, J., Zhang, W., Hu, Y.: Design of The Structural Optimization For The Upper Limb Rehabilitation Robot. 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, (2016). https://doi.org/10.1109/ICMA.2016.7558730.

  31. Ueki, S., Kawasaki, H., Ito, S., Nishimoto, Y., Abe, M., Aoki, T., Mouri, T.: Development of a Hand-Assist Robot With Multi-Degrees-Of-Freedom For Rehabilitation Therapy. IEEE/ASME Trans. Mechatron. 17(1), 136–146 (2010). https://doi.org/10.1109/TMECH.2010.2090353

    Article  Google Scholar 

  32. Xu, D., Zhang, M., Xu, H., Fu, J., Li, X., Xie, S. Q.: Interactive Compliance Control of a Wrist Rehabilitation Device (WReD) With Enhanced Training Safety. J. Health. Eng. 6537848 (2019). https://doi.org/10.1155/2019/6537848

  33. Krebs, H.I., Volpe, B.T., Williams, D., Celestino, J., Charles, S.K., Lynch, D., Hogan, N.: Robot-Aided Neurorehabilitation: A Robot For Wrist Rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3), 327–335 (2007). https://doi.org/10.1109/TNSRE.2007.903899

    Article  Google Scholar 

  34. Tagliamonte, N.L., Formica, D., Scorcia, M., Campolo, D., Guglielmelli, E: Force control of a robot for wrist rehabilitation: towards coping with human intrinsic constraints. IEEE/RSJ International Conference on Intelligent Robots and Systems, Taiwan. (2010). https://doi.org/10.1109/IROS.2010.5650353

  35. Gupta, A., O’Malley, M.K.: Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Trans. Mechatron. 11(3), 280–289 (2006). https://doi.org/10.1109/TMECH.2006.875558

    Article  Google Scholar 

  36. Gupta, A., O’Malley, M.K., Patoglu, V., Burgar, C.: Design, control and performance of RiceWrist: a force feedback wrist exoskeleton for rehabilitation and training. Int. J Robot. Res. 27(2), 233–251 (2008). https://doi.org/10.1177/0278364907084261

    Article  Google Scholar 

  37. French, J.A., Rose, C.G., O’Malley, M.K.: System characterization of MAHI Exo-II: a robotic exoskeleton for upper extremity rehabilitation. Proceedings of the ASME Dynamics Systems and Control Conference, Texas, USA. (2014). https://doi.org/10.1115/DSCC2014-6267

  38. Pehlivan, A.U., Sergi, F., Erwin, A., Yozbatiran, N., Francisco, G.E., O’Malley, M.K.: Design and validation of the RiceWrist-S exoskeleton for robotic rehabilitation after incomplete spinal cord injury. Robotica 32(08), 1415–1431 (2014). https://doi.org/10.1017/S0263574714001490

    Article  Google Scholar 

  39. Pezent, E., Rose, C.G., Deshpande, A.D., O'Malley, M.K.: Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation. 2017 IEEE International Conference on Rehabilitation Robotics (ICORR). London, United Kingdom. 720–725 (2017). https://doi.org/10.1109/ICORR.2017.8009333

  40. Takaiwa, M., Noritsugu, T., Sasaki, D.: Wrist rehabilitation using pneumatic parallel manipulator. Transact. Japan. Fluid. Power. Syst. Soc. 43(3), 85–91 (2012). https://doi.org/10.5739/jfps.43.85

    Article  Google Scholar 

  41. Squeri, V., Masia, L., Giannoni, P., Sandini, G., Morasso, P.: Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy. IEEE Trans. Neural Syst. Rehabil. Eng. 22(2), 312–325 (2014). https://doi.org/10.1109/TNSRE.2013.2250521

    Article  Google Scholar 

  42. Masia, L.: Robot Aided Wrist Rehabilitation, Lorenzo Masia, https://www.lorenzomasia.com/robot-aided-wrist-rehabilitation (2021). Accessed 15 December 2021

  43. Gopura, R.A.R.C., Kiguchi, K.: Development of an exoskeleton robot for human wrist and forearm motion assist. International Conference on Industrial and Information Systems, Peradeniye, Sri Lanka (2007). https://doi.org/10.1109/ICIINFS.2007.4579235

  44. Erdogan, A., Satici, A.C., Patoglu, V.: Passive velocity field control of a forearm-wrist rehabilitation robot. IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland. (2011). https://doi.org/10.1109/ICORR.2011.5975433

  45. Beekhuis, J.H., Westerveld, A.J., Van Der Kooij, H., Stienen, A.H.A.: Design of a self-aligning 3-DOF actuated exoskeleton for diagnosis and training of wrist and forearm after stroke. IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, United States. (2013). https://doi.org/10.1109/ICORR.2013.6650357.

  46. Martinez, J.A., Ng, P., Lu, S., Campagna, M.S., Celik, O.: Design of Wrist Gimbal: a forearm and wrist exoskeleton for stroke rehabilitation. IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, United States. (2013). https://doi.org/10.1109/ICORR.2013.6650459

  47. Atlihan, M., Akdogan, E., Arslan, M.S.: Development of a therapeutic exercise robot for wrist and forearm rehabilitation. 19th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland. (2014). https://doi.org/10.1109/MMAR.2014.6957324

  48. Omarkulov, N., Telegenov, K., Zeinullin, M., Tursynbek, I., Shintemirov, A.: Preliminary mechanical design of NU-Wrist: A 3-DOF self-aligning Wrist rehabilitation robot. 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore. (2016). https://doi.org/10.1109/BIOROB.2016.7523753

  49. Luo, L., Peng, L., Hou, Z., Wang, W.: Design and control of a 3-DOF rehabilitation robot for forearm and wrist. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, South Korea. (2017). https://doi.org/10.1109/EMBC.2017.8037764

  50. Aktan, M.E., Akdoğan, E.: Design and control of a diagnosis and treatment aimed robotic platform for wrist and forearm rehabilitation: DIAGNOBOT. Adv. Mech. Eng. 10(1), 1–13 (2018). https://doi.org/10.1177/1687814017749705

    Article  Google Scholar 

  51. Buongiorno, D., Sotgiu, E., Leonardis, D., Marcheschi, S., Solazzi, M., Frisoli, A.: WRES: a novel 3 DOF wrist exoskeleton with tendon-driven differential transmission for neuro-rehabilitation and teleoperation. IEEE Robot. Autom. Lett. 3(3), 2152–2159 (2018). https://doi.org/10.1109/LRA.2018.2810943

    Article  Google Scholar 

  52. Su, Y.Y., Yu, Y.L., Lin, C.H., Lan, C.C.: A compact wrist rehabilitation robot with accurate force/stiffness control and misalignment adaptation. Int. J. Intel. Robot App. 3(1), 45–48 (2019). https://doi.org/10.1007/s41315-019-00083-6

    Article  Google Scholar 

  53. Hussain, S., Jamwal, P.K., Van Vliet, P., Ghayesh, M.H.: State-of-the-Art Robotic Devices for Wrist Rehabilitation: Design and Control Aspects. IEEE Transact. Human-Machine Syst. 50(5), 1–12 (2020). https://doi.org/10.1109/THMS.2020.2976905

    Article  Google Scholar 

  54. Gates, D.H., Walters, L.S., Cowley, J., Wilken, J.M., Resnik, L.: Range of Motion Requirements for Upper-Limb Activities of Daily Living. Am. J. Occupat. Ther. 70(1) (2016). https://doi.org/10.5014/ajot.2016.015487

  55. Mayetin, U., Kucuk, S.: A Low Cost 3-DOF Force Sensing Unit Design for Wrist Rehabilitation Robots. Mechatronics. 78(102623) (2021). https://doi.org/10.1016/j.mechatronics.2021.102623

  56. Perry, J.C., Powell, J.M., Rosen, J.: Isotropy of an Upper Limb Exoskeleton and The Kinematics and Dynamics of The Human Arm. Appl. Bionics. Biomechan 6(2), 175–191 (2009). https://doi.org/10.1080/11762320902920575

    Article  Google Scholar 

  57. Fry, B., Reas, C.: Processing. Processing Foundation. https://processing.org/. Accessed 08 November 2022

  58. Craig, J.: Introduction to Robotics: Mechanics and Control. Pearson, New York, NY, USA. (1989)

  59. Hogan, N.: Impedance control: an approach to manipulation: part II. J. Dynamic. Syst. Meas. Cont 107(1), 8–16 (1985). https://doi.org/10.1115/1.3140713

    Article  MATH  Google Scholar 

  60. Zeng, G., Hemami, A.: An overview of robot force control. Robotica 15(5), 473–482 (1997). https://doi.org/10.1017/S026357479700057X

    Article  Google Scholar 

  61. Song, Z., Guo, S.: Study on impedance generation using an exoskeleton device for upper-limb rehabilitation. 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Hamburg, Germany. (2012). https://doi.org/10.1109/MFI.2012.6343006.

  62. Wen, Y., Rosen, J., Xiaoou, L.: PID admittance control for an upper limb exoskeleton. Proceedings of the 2011 American Control Conference. San Francisco, CA, USA. (2011). https://doi.org/10.1109/acc.2011.5991147

  63. Knecht, S., Hesse, S., Oster, P.: Rehabilitation after stroke. Deutsches Ärzteblatt International 108(36), 600–607 (2011). https://doi.org/10.3238/arztebl.2011.0600

    Article  Google Scholar 

  64. Basteris, A., Nijenhuis, S.M., Stienen, A.H.A., Buurke, J.H., Prange, G.B., Amirabdollahian, F.: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J. Neuro Eng. Rehabil. 11(111) (2014). https://doi.org/10.1186/1743-0003-11-111

  65. Yamamoto, I., Matsui, M., Higashi, T., Iso, N., Hachisuka, K., Hachisuka, A.: Wrist Rehabilitation Robot System and Its Effectiveness for Patients. Sens. Mater 30(8), 1825 (2018). https://doi.org/10.18494/SAM.2018.1901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Umut Mayetin and Serdar Kucuk. The first draft of the manuscript was written by Umut Mayetin and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Umut Mayetin.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayetin, U., Kucuk, S. Design and Experimental Evaluation of a Low Cost, Portable, 3-DOF Wrist Rehabilitation Robot with High Physical Human–Robot Interaction. J Intell Robot Syst 106, 65 (2022). https://doi.org/10.1007/s10846-022-01762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01762-6

Keywords

Navigation