Skip to main content
Log in

Event-triggered-based Decentralized Optimal Control of Modular Robot Manipulators Using RNN Identifier

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, an event-triggered-based decentralized tracking control method is proposed for modular robot manipulators (MRMs) using a recurrent neural network (RNN) and neuro-dynamic programming (NDP). The joint torque feedback (JTF) technique is introduced to model the MRM subsystems. The cost function of each subsystem consists of a tracking error fusion function and a term summarizing the RNN identifier errors. The event-triggered Hamiltonian-Jacobi-Bellman (ETHJB) equation is solved by constructing a critic neural network using NDP, and a decentralized optimal tracking control policy under the event-triggered framework can be obtained. The closed-loop MRM system is shown to be uniformly ultimately bounded under the Lyapunov stability theorem. Finally, the experimental results verify that the proposed control method is superior to the time-triggered optimal control policy and the observer-critic-based event-triggered optimal control policy proposed in the previous work of the author.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

References

  1. Schmitz, D., Khosla, P., Kanade, T.: The CMU reconfigurable modular manipulator system. Inst. Software Res., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep CMU-RI-TR-88-7 (1988)

  2. Paredis, C., Brown, H., Khosla, P.: A rapidly deployable manipulator system. Robot. Auton. Syst. 21(3), 289–304 (1997)

    Article  Google Scholar 

  3. Barbieri, L., Bruno, F., Gallo, A.: Design, prototyping and testing of a modular small-sized underwater robotic arm controlled through a master-slave approach. Ocean Eng. 158(15), 253–262 (2018)

    Article  Google Scholar 

  4. Li, D., Pan, Z., Deng, H.: 2D Underwater obstacle avoidance control algorithm based on IB-LBM and APF method for a multi-joint snake-like robot. J. Intell. Robot. Syst. 98(3), 771–790 (2020)

    Article  Google Scholar 

  5. Zhong, F., Li, P., Shi, J.: Foot-controlled robot-enabled EnDOscope Manipulator (FREEDOM) for sinus surgery: design, control, and evaluation. IEEE Trans. Biomed. Eng. 67(6), 1530–1541 (2020)

    Article  Google Scholar 

  6. Lunghi, G., Marin, R.: Multimodal human-robot interface for accessible remote robotic interventions in hazardous environments. IEEE Access 7, 127290–127319 (2019)

    Article  Google Scholar 

  7. Johnson, B., Esantsi, N., Cappelleri, D.: Design of the MAZE platform and microrobots for independent control and micromanipulation tasks. IEEE Robot. Autom. Lett. 5(4), 5677–5684 (2020)

    Article  Google Scholar 

  8. Tan, N., Yu, P.: Robust model-free control for redundant robotic manipulators based on zeroing neural networks activated by nonlinear functions. Neurocomputing 438, 44–54 (2021)

    Article  Google Scholar 

  9. Kim, Y.H., Lewis, F.L.: Neural network output feedback control of robot manipulators. IEEE Trans. Robot. Autom. 15(2), 301–309 (1999)

    Article  Google Scholar 

  10. Choi, J., Baek, J., Lee, W.: Adaptive model-free control with nonsingular terminal sliding-mode for application to robot manipulators. IEEE Access 8, 169897–169907 (2020)

    Article  Google Scholar 

  11. Li, Z., Ge, S.S., Wang, Z.: Robust adaptive control of coordinated multiple mobile manipulators. Mechatronics 18(5-6), 239–250 (2008)

    Article  Google Scholar 

  12. Liu, G., Abdul, S., Andrew, A.: Distributed control of modular and reconfigurable robot with torque sensing. Robotica 26(1), 75–84 (2008)

    Article  Google Scholar 

  13. Sim, O., Oh, J., Lee, K.K.: Collision detection and safe reaction algorithm for non-backdrivable manipulator with single force/torque sensor. J. Intell. Robot. Syst. 91(3-4), 403–412 (2018)

    Article  Google Scholar 

  14. Tang, L., Liu, G., Yang, M.: Joint design and torque feedback experiment of rehabilitation robot. Adv. Mech. Eng. 12(5), 168781402092449 (2020)

    Article  Google Scholar 

  15. Li, Y., Lu, Z., Zhou, F.: Decentralized trajectory tracking control for modular and reconfigurable robots with torque sensor: adaptive terminal sliding control-based approach. J. Dyn. Syst. Meas. Control 141 (6), 061003 (2019)

    Article  Google Scholar 

  16. Bernhardsson, B.: Comparison of periodic and event based sampling for first-order stochastic systems. IFAC Proc. 32(2), 5006–5011 (1999)

    Article  Google Scholar 

  17. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Abbas, M., Al, Issa, S., Dwivedy, S.K.: Event-triggered adaptive hybrid position-force control for robot-assisted ultrasonic examination system. J. Intell. Robot. Syst. 102(4) (2021)

  19. Tallapragada, P., Chopra, N.: On event triggered tracking for nonlinear systems. IEEE Trans. Autom. Control 58(9), 2343–2348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meng, L., Yong, C., Yla, B.: Adaptive disturbance observer-based event-triggered fuzzy control for nonlinear system. Inf. Sci. 542, 380–390 (2021)

    MathSciNet  Google Scholar 

  21. Ghodrat, M., Marquez, H.J.: On the event-triggered controller design. IEEE Trans. Autom. Control 99, 1–1 (2019)

    MATH  Google Scholar 

  22. Liu, T., Zhang, P., Jiang, Z.P.: Event-triggered input-to-state stabilization of nonlinear systems subject to disturbances and dynamic uncertainties. Automatica 108, 108488 (2019)

    Article  MathSciNet  Google Scholar 

  23. Liu, Y., Zhu, Q., Zhao, N.: Event-triggered adaptive fuzzy control for switched nonlinear systems with state constraints. Inf. Sci. 562, 28–43 (2021)

    Article  MathSciNet  Google Scholar 

  24. Chen, W., Wang, J., Ma, K.: Novel adaptive neural networks control with event-triggered for uncertain nonlinear system. J. Frankl. Inst. 357(18), 10410–10431 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jin, X., Li, Y.X.: Fuzzy adaptive event-triggered control for a class of nonlinear systems with time-varying full state constraints. Inf. Sci. 563, 111–129 (2021)

    Article  MathSciNet  Google Scholar 

  26. Yu, Q., He, X., Wu, L.: Finite-time adaptive event-triggered fault-tolerant control of nonlinear systems based on fuzzy observer. Inf. Sci. 572(3), 241–262 (2021)

    Article  MathSciNet  Google Scholar 

  27. Luo, F., Zhao, B., Liu, D.: Event-triggered decentralized optimal fault tolerant control for mismatched interconnected nonlinear systems through adaptive dynamic programming. Optim. Control Appl. Meth. 45(5), 1365–1384 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Werbos, P.: Approximate dynamic programming for real time control and neural modeling. In: White, D.A., Sofge, D.A. (eds.) Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches. Van Nostrand Reinhold, New York (1992)

  29. Modares, H., Lewis, F.L.: Optimal tracking control of nonlinear partially-unknown constrained-input systems using integral reinforcement learning. Automatica 50(7), 1780–1792 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, D., Xue, S., Zhao, B.: Adaptive dynamic programming for control: a survey and recent advances. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 142–160 (2021)

    Article  Google Scholar 

  31. Narayanan, V., Jagannathan, S., Ramkumar, K.: Event-sampled output feedback control of robot manipulators using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 30(6), 1651–1658 (2019)

    Article  MathSciNet  Google Scholar 

  32. Guo, Z.J., Yao, D.Y.: Event-triggered guaranteed cost fault-tolerant optimal tracking control for uncertain nonlinear system via adaptive dynamic programming. Int. J. Robust Nonlinear Control 31(7), 2572–2592 (2021)

    Article  MathSciNet  Google Scholar 

  33. Chen, W., Wang, J., Ma, K.: Adaptive event-triggered neural control for nonlinear uncertain system with input constraint. Int. J. Robust. Nonlinear Control 30(10) (2020)

  34. Rsa, B., Lu, L.: Event-triggered constrained robust control for partly-unknown nonlinear systems via ADP. Neurocomputing. 404, 294–303 (2020)

    Article  Google Scholar 

  35. Gao, H., Song, Y.D., Wen, C.Y.: Event-triggered adaptive neural network controller for uncertain nonlinear system. Inf. Sci. 506, 148–160 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, X., He, H.: Adaptive critic learning and experience replay for decentralized event-triggered control of nonlinear interconnected systems. IEEE Trans. Syst. Man Cybern. Syst. 50(11), 4043–4055 (2020)

    Article  Google Scholar 

  37. Zhao, B., Liu, D.: Event-triggered decentralized tracking control of modular reconfigurable robots through adaptive dynamic programming. IEEE Trans. Ind. Electron. 67(4), 3054–3064 (2019)

    Article  Google Scholar 

  38. Gu, J., Zhu, M., Cao, L.: Improved uncalibrated visual servo strategy for hyper-redundant manipulators in on-orbit automatic assembly. Appl. Sci. 10(19), 6968 (2020)

    Article  Google Scholar 

  39. Ma, B., Li, Y., An, T.: Compensator-critic structure-based neuro-optimal control of modular robot manipulators with uncertain environmental contacts using non-zero-sum games. Knowl.-Based Syst. 224 (2021)

  40. Vamvoudakis, K.G.: Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems. Automatica 1(3), 282–293 (2014)

    Google Scholar 

  41. Yu, W.: Recent Advances in Intelligent Control Systems. Springer-Verlag, London UK (2009)

    Book  MATH  Google Scholar 

  42. Yang, X., Liu, D.R., Wang, D.: Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints. Int. J. Control 87(3), 553–566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pan, Q., Ma, B., Dong, B, Li, Y.: Observer-critic-based event-triggered decentralized optimal control of modular robot manipulators. In: 2021 40th Chinese Control Conference (CCC), pp 3912–3918. IEEE (2021)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant no. 62173047), the Scientific Technological Development Plan Project in Jilin Province of China (Grant no. YDZJ202201ZYTS508) and the Science and Technology project of Jilin Provincial Education Department of China during the 13th Five-Year Plan Period (Grant no. JJKH20220689KJ).

Author information

Authors and Affiliations

Authors

Contributions

Fan Zhou: Software. Qiang Pan: Writing-original draft. Yuanchun Li: Supervision. Bing Ma: Conceptualization, Methodology. Tianjiao An: Data curation.

Corresponding author

Correspondence to Fan Zhou.

Ethics declarations

Ethics approval

Not applicable

Consent for Publication

Not applicable

Consent to participate

Not applicable

Conflict of Interests

The authors declare that there have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Q., Li, Y., Ma, B. et al. Event-triggered-based Decentralized Optimal Control of Modular Robot Manipulators Using RNN Identifier. J Intell Robot Syst 106, 55 (2022). https://doi.org/10.1007/s10846-022-01746-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01746-6

Keywords

Navigation