Skip to main content
Log in

A Review: Technological Trends and Development Direction of Pipeline Robot Systems

  • Review Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Aging pipes are a deadly hazard that necessitate continuous and periodic pipe maintenance. However, it is impossible for humans to work directly inside small pipes or pipes with toxic internal environments. Pipeline robots were developed for this purpose. They have already been used in the field and there is ongoing research to increase their efficiency and develop additional functions that have not yet been commercialized. Recognizing latest research trends in pipeline robot systems will be useful in setting meaningful development goals and reducing the possibility of research duplication. In addition, understanding the practical purpose of pipeline robots in the market will hasten the commercialization of developed models. In this review, studies on pipeline robot research over the past 10 years are reviewed to chart the future directions of research on pipeline robots. The key topics in pipeline robot research are largely divided into six categories, according to the purpose and mechanism, namely, locomotion mechanism, wall-press mechanism, steering joint, sensing and control, localization and mapping, and tool. Recent studies are classified according to each item. Finally, we analyzed the research cases that were not limited to laboratories, but have been tested in the fields and established the key points to be considered to ensure field applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code or data availability

Not applicable.

References

  1. Kishawy, H.A., Gabbar, H.A.: Review of pipeline integrity management practices. Int. J. Press. Vessel. Pip. 87(7), 373–380 (2010)

    Article  Google Scholar 

  2. Mills, G.H., Jackson, A.E., Richardson, R.C.: Advances in the inspection of unpiggable pipelines. Robotics 6(4), 36 (2017)

    Article  Google Scholar 

  3. Chattopadhyay, P., Ghoshal, S., Majumder, A., Dikshit, H.: Locomotion methods of pipe climbing robots: a review. J. Eng. Sci. Technol. Rev. 11(4) (2018)

  4. Law, W.C., Chen, I.M., Yeo, S.H., Seet, G.L., Low, K.H.: A study of in-pipe robots for maintenance of large-diameter sewerage tunnel. In: The 14Th IFToMM World Congress, vol. 3, pp. 225–232 (2015)

  5. Tur, J.M.M., Garthwaite, W.: Robotic devices for water main in-pipe inspection: a survey. J. Field Robot. 4(27), 491–508 (2010)

    Google Scholar 

  6. Roslin, N.S., Anuar, A., Jalal, M.F.A., Sahari, K.S.M.: A review: hybrid locomotion of in-pipe inspection robot. Procedia Eng. 41, 1456–1462 (2012)

    Article  Google Scholar 

  7. Caprari, G., Breitenmoser, A., Fischer, W., Hürzeler, C., Tâche, F., Siegwart, R., Mondada, F.: Highly compact robots for inspection of power plants. J. Field Robot. 29(1), 47–68 (2012)

    Article  Google Scholar 

  8. Dertien, E., Foumashi, M.M., Pulles, K., Stramigioli, S.: Design of a robot for in-pipe inspection using omnidirectional wheels and active stabilization. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5121–5126 (2014)

  9. Kim, H.M., Choi, Y.S., Lee, Y.G., Choi, H.R.: Novel mechanism for in-pipe robot based on a multiaxial differential gear mechanism. IEEE/ASME Trans. Mechatron. 22(1), 227–235 (2016)

    Article  Google Scholar 

  10. Park, J., Hyun, D., Cho, W.H., Kim, T.H., Yang, H.S.: Normal-force control for an in-pipe robot according to the inclination of pipelines. IEEE Trans. Ind. Electron. 58(12), 5304–5310 (2010)

    Article  Google Scholar 

  11. Kakogawa, A., Ma, S., Hirose, S.: An in-pipe robot with underactuated parallelogram crawler modules. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1687–1692 (2014)

  12. Suryavanshi, K., Vadapalli, R., Vucha, R., Sarkar, A., Krishna, K.M.: Omnidirectional tractable three module robot. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9316–9321 (2020)

  13. Singh, A., Sachdeva, E., Sarkar, A., Krishna, K.M.: COCrIP: Compliant omniCrawler in-pipeline robot. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5587–5593 (2017)

  14. Ciszewski, M., Wacławski, M., Buratowski, T., Giergiel, M., Kurc, K.: Design, modelling and laboratory testing of a pipe inspection robot. Archive of mechanical engineering, pp. 395–407 (2015)

  15. Ren, T., Zhang, Y., Li, Y., Chen, Y., Liu, Q.: Driving mechanisms, motion, and mechanics of screw drive In-pipe robots: a review. Appl. Sci. 9(12), 2514 (2019)

    Article  Google Scholar 

  16. Kakogawa, A., Ma, S.: Mobility of an in-pipe robot with screw drive mechanism inside curved pipes. In: 2010 IEEE International Conference on Robotics and Biomimetics, pp. 1530–1535 (2010)

  17. Chen, Y., Liu, Q., Ren, T.: A simple and novel helical drive in-pipe robot. Robotica 33 (4), 920–932 (2015)

    Article  Google Scholar 

  18. Li, P., Ma, S., Li, B., Wang, Y., Liu, Y.: Self-rescue mechanism for screw drive in-pipe robots. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2843–2849 (2010)

  19. Ye, C., Liu, L., Xu, X., Chen, J.: Development of an in-pipe robot with two steerable driving wheels. In: 2015 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1955–1959 (2015)

  20. Ren, T., Liu, Q., Li, Y., Chen, Y.: Design, analysis and innovation in variable radius active screw in-pipe drive mechanisms, vol. 14 (2017)

  21. Li, T., Ma, S., Li, B., Wang, M., Li, Z., Wang, Y.: Development of an in-pipe robot with differential screw angles for curved pipes and vertical straight pipes. J. Mech. Robot. 9(5) (2017)

  22. Venkateswaran, S., Chablat, D., Boyer, F.: Numerical and experimental validation of the prototype of a bio-inspired piping inspection robot. Robot. 8(2), 32 (2019)

    Article  Google Scholar 

  23. Ostertag, O., Ostertagová, E., Kelemen, M., Kelemenová, T., Buša, J., Virgala, I.: Miniature mobile bristled in-pipe machine. Int. J. Adv. Robot. Syst. 11(12), 189 (2014)

    Article  Google Scholar 

  24. Jeon, W., Kim, I., Park, J., Yang, H.: Design and control method for a high-mobility in-pipe robot with flexible links. Industrial robot: Int. J. (2013)

  25. Fang, D., Shang, J., Luo, Z., Lv, P., Wu, G.: Development of a novel self-locking mechanism for continuous propulsion inchworm in-pipe robot. Advances in Mechanical Engineering 10(1), 1687814017749402 (2018)

    Article  Google Scholar 

  26. Horchler, A.D., Kandhari, A., Daltorio, K.A., Moses, K.C., Andersen, K.B., Bunnelle, H., Quinn, R.D.: Worm-like robotic locomotion with a compliant modular mesh. In: Conference on Biomimetic and Biohybrid Systems, pp. 26–37 (2015)

  27. Enner, F., Rollinson, D., Choset, H.: Motion estimation of snake robots in straight pipes. In: 2013 IEEE International Conference on Robotics and Automation, pp. 5168–5173 (2013)

  28. Shin, H., Jeong, K.M., Kwon, J.J.: Development of a Snake Robot Moving in a Small Diameter Pipe. In: ICCAS 2010, pp. 1826–1829 (2010)

  29. Jun, C., Tao, C., Zongquan, D.: Scheme design of extended configuration for in-pipe robot adapting mechanism. In: 2011 Third International Conference on Measuring Technology and Mechatronics Automation, vol. 3, pp. 210–212 (2011)

  30. Bekhit, A., Dehghani, A., Richardson, R.: Kinematic analysis and locomotion strategy of a pipe inspection robot concept for operation in active pipelines. Int. J. Mech. Eng. Mechatron. 1(2), 15–27 (2012)

    Google Scholar 

  31. Yoon, K.H., Park, Y.W.: Design, fabrication, and characterization of in-pipe robot with controllable magnetic force. In: 2012 IEEE International Conference on Automation Science and Engineering (CASE), pp. 786–789 (2012)

  32. Hadi, A., Hassani, A., Alipour, K., Askari Moghadam, R., Pourakbarian Niaz, P.: Developing an adaptable pipe inspection robot using shape memory alloy actuators. Journal of Intelligent Material Systems and Structures 1045389X19898255 (2020)

  33. Lee, D., Park, J., Hyun, D., Yook, G., Yang, H.S.: Novel mechanisms and simple locomotion strategies for an in-pipe robot that can inspect various pipe types. Mech. Mach. Theory 56, 52–68 (2012)

    Article  Google Scholar 

  34. Kakogawa, A., Oka, Y., Ma, S.: Multi-link articulated wheeled in-pipe robot with underactuated twisting joints. In: 2018 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 942–947 (2018)

  35. Kim, H.M., Yang, S.U., Choi, Y.S., Mun, H.M., Park, C.M., Choi, H.R.: Design of back-drivable joint mechanism for in-pipe robot. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3779–3784 (2015)

  36. Liu, Q., Chen, Y., Ren, T., Wei, Y.: Optimized inchworm motion planning for a novel in-pipe robot. Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci. 228(7), 1248–1258 (2014)

    Google Scholar 

  37. Park, J.J., Moon, J.W., Kim, H., Jang, S.C., Kim, D.G., Ahn, K., Choi, H.R.: Development of the untethered in-pipe inspection robot for natural gas pipelines. In: 2013 10Th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 55–58 (2013)

  38. Kakogawa, A., Nishimura, T., Ma, S.: Development of a Screw Drive In-Pipe Robot for Passing through Bent and Branch Pipes. In: IEEE ISR 2013, pp. 1–6 (2013)

  39. Sato, K., Ohki, T., Lim, H.O.: Development of in-pipe robot capable of coping with various diameters. In: 2011 11Th International Conference on Control, Automation and Systems, pp. 1076–1081 (2011)

  40. Dertien, E., Stramigioli, S., Pulles, K.: Development of an inspection robot for small diameter gas distribution mains. In: ICRA, pp. 5044–5049 (2011)

  41. Baba, T., Kameyama, Y., Kamegawa, T., Gofuku, A.: A snake robot propelling inside of a pipe with helical rolling motion. In: Proceedings of SICE Annual Conference 2010, pp. 2319–2325 (2010)

  42. Zeng, X.: Reinforcement Learning Based Approach for the Navigation of a Pipe-Inspection Robot at Sharp Pipe Corners. Master’s thesis, University of Twente (2019)

  43. Masuta, H., Watanabe, H., Sato, K., Lim, H.O.: Recognition of branch pipe for pipe inspection robot using fiber grating vision sensor. In: 2013 10Th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 633–638 (2013)

  44. Choi, Y.S., Kim, H.M., Mun, H.M., Lee, Y.G., Choi, H.R.: Recognition of pipeline geometry by using monocular camera and PSD sensors. Intell. Serv. Robot. 10(3), 213–227 (2017)

    Article  Google Scholar 

  45. Lee, D.H., Moon, H., Choi, H.R.: Landmark detection methods for in-pipe robot traveling in urban gas pipelines. Robotica 34(3), 601–618 (2016)

    Article  Google Scholar 

  46. Kakogawa, A., Komurasaki, Y., Ma, S.: Anisotropic shadow-based operation assistant for a pipeline-inspection robot using a single illuminator and camera. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1305–1310 (2017)

  47. Brown, L., Carrasco, J., Watson, S., Lennox, B.: Elbow detection in pipes for autonomous navigation of inspection robots. J. Intell. Robot. Syst. 95(2), 527–541 (2019)

    Article  Google Scholar 

  48. Sera, F., Kakogawa, A., Ma, S.: Joint angle control of an 8-inch gas pipeline inspection robot to pass through bends. In: 2019 International Conference on Advanced Mechatronic Systems (ICAMechs), pp. 28–33 (2019)

  49. Song, Z., Ren, H., Zhang, J., Ge, S.S.: Kinematic analysis and motion control of wheeled mobile robots in cylindrical workspaces. IEEE Trans. Autom. Sci. Eng. 13(2), 1207–1214 (2015)

    Article  Google Scholar 

  50. Oyama, A., Iida, H., Ji, Y., Umeda, K., Mano, Y., Yasui, T., Nakamura, T.: Three-dimensional Mapping of Pipeline from inside images using earthworm robot equipped with camera. IFAC-PapersOnLine 52(22), 87–90 (2019)

    Article  Google Scholar 

  51. Murtra, A.C., Tur, J.M.M.: IMU and cable encoder data fusion for in-pipe mobile robot localization. In: 2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA), pp. 1–6 (2013)

  52. Hansen, P., Alismail, H., Rander, P., Browning, B.: Monocular visual odometry for robot localization in LNG Pipes. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3111–3116 (2011)

  53. Wu, Y., Mittmann, E., Winston, C., Youcef-Toumi, K.: A practical minimalism approach to in-pipe robot localization. In: 2019 American Control Conference (ACC), pp. 3180–3187 (2019)

  54. Wu, D., Chatzigeorgiou, D., Youcef-Toumi, K., Ben-Mansour, R.: Node localization in robotic sensor networks for pipeline inspection. IEEE Trans. Ind. Inform. 12(2), 809–819 (2015)

    Article  Google Scholar 

  55. Lee, D.H., Moon, H., Koo, J.C., Choi, H.R.: Map building method for urban gas pipelines based on landmark detection. International Journal of Control, Automation and Systems 11(1), 127–135 (2013)

    Article  Google Scholar 

  56. Song, H., Ge, K., Qu, D., Wu, H., Yang, J.: Design of in-pipe robot based on inertial positioning and visual detection. Adv. Mech. Eng. 8(9), 1687814016667679 (2016)

    Article  Google Scholar 

  57. Bando, Y., Suhara, H., Tanaka, M., Kamegawa, T., Itoyama, K., Yoshii, K., Okuno, H.G.: Sound-based online localization for an in-pipe snake robot. In: 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 207–213 (2016)

  58. Al-Masri, W.M., Abdel-Hafez, M.F., Jaradat, M.A.: Inertial navigation system of pipeline inspection gauge. IEEE Trans. Control Syst. Technol. 28(2), 609–616 (2018)

    Article  Google Scholar 

  59. Kazeminasab, S., Aghashahi, M., Wu, R., Banks, M.K.: Localization techniques for in-pipe robots in water distribution systems. In: 2020 8Th International Conference on Control, Mechatronics and Automation (ICCMA), pp. 6–11 (2020)

  60. Vriesman, D., Britto, A.S., Zimmer, A., Koerich, A.L., Paludo, R: Automatic visual inspection of thermoelectric metal pipes. SIViP 13(5), 975–983 (2019)

    Article  Google Scholar 

  61. Bandala, A.A., Maningo, J.M.Z., Fernando, A.H., Vicerra, R.R.P., Antonio, M.A.B., Diaz, J.A.I., Mascardo, P.A.R.: Control and mechanical design of a multi-diameter tri-legged in-pipe traversing robot. In: 2019 IEEE/SICE International Symposium on System Integration (SII), pp. 740–745 (2019)

  62. Kawasue, K., Komatsu, T.: Shape measurement of a sewer pipe using a mobile robot with computer vision. Int. J. Adv. Robot. Syst. 10(1), 52 (2013)

    Article  Google Scholar 

  63. Cheng, J.C., Wang, M.: Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques. Autom. Constr. 95, 155–171 (2018)

    Article  Google Scholar 

  64. Kunzel, J., Werner, T., Eisert, P., Waschnewski, J.: Automatic analysis of sewer pipes based on unrolled monocular fisheye images. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2019–2027 (2018)

  65. Bae, J., An, J., Chung, G.: Multi-body dynamics experimental analysis for non-destructive inspection robot in water main pipe. In: 2019 12Th International Workshop on Robot Motion and Control (Romoco), pp. 148–153 (2019)

  66. Kim, D.K., Yoo, H.R., Yoo, J.S., Kim, D.K., Cho, S.H., Koo, S.J., Jung, H.K.: Development of MFL system for in-pipe robot for unpiggable natural gas pipelines. In: 2013 10Th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 51–54 (2013)

  67. Chatzigeorgiou, D., Youcef-Toumi, K., Ben-Mansour, R.: Design of a novel in-pipe reliable leak detector. IEEE/ASME Transactions on Mechatronics 20(2), 824–833 (2014)

    Article  Google Scholar 

  68. Ékes, C., Neducza, B.: Robot mounted GPR for pipe inspection. In: 2012 14Th Int. Conf. Ground Penetrating Radar (GPR), pp. 160–164 (2012)

  69. Wu, Y., Kim, K., Henry, M.F., Youcef-Toumi, K.: Design of a leak sensor for operating water pipe systems. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6075–6082 (2017)

  70. Chatzigeorgiou, D.M., Khalifa, A.E., Youcef-Toumi, K., Ben-Mansour, R.: An in-pipe leak detection sensor: sensing capabilities and evaluation. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 54808, pp. 481–489 (2011)

  71. Jeon, S.W., Jeong, W., Park, D., Kwon, S.B.: Design of an intelligent duct cleaning robot with force compliant brush. In: 2012 12Th International Conference on Control, Automation and Systems, pp. 2033–2037 (2012)

  72. Feng, G., Li, Z., He, Z., Feng, Y., Xue, T., Liu, K.: Effect of high pressure water jet cleaning device on the motion stability of an in-pipe cleaning robot. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1040–1045 (2016)

  73. Xu, Z.L., Lu, S., Yang, J., Feng, Y.H., Shen, C.T.: A wheel-type in-pipe robot for grinding weld beads. Adv. Manuf. 5(2), 182–190 (2017)

    Article  Google Scholar 

  74. Tugeumwolachot, T., Seki, H., Tsuji, T., Hiramitsu, T.: Development of a compact sewerage robot with multi-DOF cutting tool. Artif. Life Robot. 26(4), 404–411 (2021)

    Article  Google Scholar 

  75. Hashem, M., A Abdelwahab, S.: Mechanical design and simulation of a water pipes cleaning robot. Port-Said Eng. Res. J. 25(1), 128–141 (2021)

    Google Scholar 

  76. Matsuno, F., Kamegawa, T., Qi, W., Takemori, T., Tanaka, M., Nakajima, M., Okuno, H.G.: Development of Tough Snake Robot Systems. In: Disaster Robotics, pp. 267–326 (2019)

  77. Jones, H., Maley, S., Mousaei, M., Kohanbash, D., Whittaker, W., Teza, J., Whittaker, W.: A Robot for nondestructive assay of holdup deposits in gaseous diffusion piping. arXiv:1901.10341(2019)

  78. Valls Miro, J., Ulapane, N., Shi, L., Hunt, D., Behrens, M.: Robotic pipeline wall thickness evaluation for dense nondestructive testing inspection. J. Field Robot. 35(8), 1293–1310 (2018)

    Article  Google Scholar 

  79. Seet, G., Yeo, S.H., Law, W.C., Wong, C.Y., Sapari, S., Liau, K.K.: Design of tunnel inspection robot for large diameter sewers. Procedia Comput. Sci. 133, 984–990 (2018)

    Article  Google Scholar 

  80. Wang, Z., Cao, Q., Luan, N., Zhang, L.: Development of an autonomous in-pipe robot for offshore pipeline maintenance. Industrial robot: An International Journal (2010)

  81. Schempf, H., Mutschler, E., Gavaert, A., Skoptsov, G., Crowley, W.: Visual and nondestructive evaluation inspection of live gas mains using the explorerTM family of pipe robots. J. Field Robot. 27(3), 217–249 (2010)

    Article  Google Scholar 

  82. Rollinson, D., Choset, H.: Pipe network locomotion with a snake robot. J. Field Robot. 33(3), 322–336 (2016)

    Article  Google Scholar 

  83. Kwon, Y.S., Yi, B.J.: Development of a pipeline inspection robot system with diameter of 40Mm to 70Mm (Tbot-40). In: 2010 IEEE International Conference on Mechatronics and Automation, pp. 258–263 (2010)

  84. Kim, D.K., Yoo, H.R., Cho, S.H., Koo, S.J., Kim, D.K., Yoo, J.S., Rho, Y.W.: Inspection of unpiggable natural gas pipelines using in-pipe robot. In: International Conference on Advanced Engineering Theory and Applications, pp. 364–373 (2016)

  85. Debenest, P., Guarnieri, M., Hirose, S.: Pipetron series-robots for pipe inspection. In: Proceedings of the 2014 3rd international conference on applied robotics for the power industry, pp. 1–6 (2014)

  86. Kim, S., Kim, C.H., Bae, Y.G., Na, H., Jung, S.: NDT inspection mobile robot with spiral driven mechanism in pipes. In: IEEE ISR 2013, pp. 1–2 (2013)

  87. Mateos, L.A.L.A., Vincze, M.: In-pipe robot with capability of self stabilization and accurate pipe surface cleaning. In: Proceedings of the IEEE international conference on automation science and engineering, vol. 2013, pp. 7 (2013)

  88. Kang, H., Oh, J.S.: Water-jet Cleaning motion of the in-pipe robot with screw drive inside the water pipes. J. Korean Soc. Mar. Eng. 36(7), 894–901 (2012)

    Google Scholar 

  89. Walter, C., Saenz, J., Elkmann, N., Althoff, H., Kutzner, S., Stuerze, T.: Design considerations of robotic system for cleaning and inspection of large-diameter sewers. J. Field Robot. 29(1), 186–214 (2012)

    Article  Google Scholar 

Download references

Funding

The work presented herein is part of the research project ”Internal prognosis technology of district heating pipes aiming to upgrade the safety management of DH pipes” funded by the Korea District Heating Corporation (KDHC).

Author information

Authors and Affiliations

Authors

Contributions

Heesik Jang wrote the manuscript with support from Tae Yu Kim and Ye Chan Lee. Hyouk Ryeol Choi supervised the overall process. Yeon Soo Kim, Jooyong Kim and Hae Yong Lee conceived the study and were in charge of overall direction and planning.

Corresponding author

Correspondence to Hyouk Ryeol Choi.

Ethics declarations

Ethics approval

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interests

Heesik Jang, Tae Yu Kim, Ye Chan Lee, Yeon Soo Kim, Jooyong Kim, Hae Yong Lee and Hyouk Ryeol Choi declare that they have no conflict of interest / competing interests.

Consent to participate

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H., Kim, T.Y., Lee, Y.C. et al. A Review: Technological Trends and Development Direction of Pipeline Robot Systems. J Intell Robot Syst 105, 59 (2022). https://doi.org/10.1007/s10846-022-01669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01669-2

Keywords

Navigation