Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the 21st International Conference on Machine learning, p. 1 (2004)
Ablett, T., Marić, F., Kelly, J.: Fighting failures with fire: Failure identification to reduce expert burden in intervention-based learning. arXiv:2007.00245 (2020)
Alvarez, H., Paz, L.M., Sturm, J., Cremers, D.: Collision Avoidance for Quadrotors with a Monocular Camera. In: Experimental Robotics, pp 195–209. Springer (2016)
Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst 57(5), 469–483 (2009)
Article
Google Scholar
Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for self-driving cars. arXiv:1604.07316(2016)
Burgess, C.P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., Lerchner, A.: Understanding disentangling in β-vae. arXiv:1804.03599 (2018)
Chambers, A., Achar, S., Nuske, S., Rehder, J., Kitt, B., Chamberlain, L., Haines, J., Scherer, S., Singh, S.: Perception for a River Mapping Robot. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 227–234. IEEE (2011)
Clement, L., Kelly, J., Barfoot, T.D.: Robust monocular visual teach and repeat aided by local ground planarity and color-constant imagery. J. Field Robot 34(1), 74–97 (2017)
Article
Google Scholar
Daftry, S., Zeng, S., Khan, A., Dey, D., Melik-Barkhudarov, N., Bagnell, J.A., Hebert, M.: Robust monocular flight in cluttered outdoor environments. arXiv:1604.04779 (2016)
Delmerico, J., Scaramuzza, D.: A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2502–2509. IEEE (2018)
Dey, D., Shankar, K.S., Zeng, S., Mehta, R., Agcayazi, M.T., Eriksen, C., Daftry, S., Hebert, M., Bagnell, J.A.: Vision and Learning for Deliberative Monocular Cluttered Flight. In: Field and Service Robotics, pp. 391–409. Springer (2016)
Furgale, P., Barfoot, T.D.: Visual teach and repeat for long-range rover autonomy. J. Field Robot 27(5), 534–560 (2010)
Article
Google Scholar
Giusti, A., Guzzi, J., Cireşan, D. C., He, F.L., Rodríguez, J.P., Fontana, F., Faessler, M., Forster, C., Schmidhuber, J., Di Caro, G., et al.: A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robot. Autom. Lett 1(2), 661–667 (2015)
Article
Google Scholar
Goecks, V.G., Gremillion, G.M., Lawhern, V.J., Valasek, J., Waytowich, N.R.: Efficiently combining human demonstrations and interventions for safe training of autonomous systems in real-time. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 2462–2470 (2019)
Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous uav guidance. J. Intell. Robot. Syst. 57(1-4), 65 (2010)
Article
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: Beta-vae: Learning basic visual concepts with a constrained variational framework (2016)
Hrabar, S., Sukhatme, G.S., Corke, P., Usher, K., Roberts, J.: Combined Optic-Flow and Stereo-Based Navigation of Urban Canyons for a Uav. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3309–3316. IEEE (2005)
Iost Filho, F.H., Heldens, W.B., Kong, Z., de Lange, E.S.: Drones: Innovative technology for use in precision pest management. J. Econ. Entomol. 113(1), 1–25 (2020)
Article
Google Scholar
Irizarry, J., Gheisari, M., Walker, B.N.: Usability assessment of drone technology as safety inspection tools. Journal of Information Technology in Construction (ITcon) 17(12), 194–212 (2012)
Google Scholar
Kelly, M., Sidrane, C., Driggs-Campbell, K., Kochenderfer, M.J.: Hg-Dagger: Interactive Imitation Learning with Human Experts. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8077–8083. IEEE (2019)
Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field. Robot 29(2), 315–378 (2012)
Article
Google Scholar
Kim, H., Mnih, A.: Disentangling by Factorising. In: International Conference on Machine Learning, pp. 2649–2658. PMLR (2018)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114 (2013)
Krajník, T., Cristóforis, P., Kusumam, K., Neubert, P., Duckett, T.: Image features for visual teach-and-repeat navigation in changing environments. Robot. Auton. Syst. 88, 127–141 (2017)
Article
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Advances Neural Inf. Process. Syst 25, 1097–1105 (2012)
Google Scholar
Kwak, J., Sung, Y.: Autonomous uav flight control for gps-based navigation. IEEE Access 6, 37947–37955 (2018)
Article
Google Scholar
Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond Pixels Using a Learned Similarity Metric. In: International Conference on Machine Learning, pp. 1558–1566. PMLR (2016)
Lee, D.J., Merrell, P., Wei, Z., Nelson, B.E.: Two-frame structure from motion using optical flow probability distributions for unmanned air vehicle obstacle avoidance. Mach. Vis. Appl. 21(3), 229–240 (2010)
Article
Google Scholar
Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies. J. Mach. Learn. Res 17(1), 1334–1373 (2016)
MathSciNet
MATH
Google Scholar
Loquercio, A., Maqueda, A.I., Del-Blanco, C.R., Scaramuzza, D.: Dronet: Learning to fly by driving. IEEE Robot. Autom. Lett 3(2), 1088–1095 (2018)
Article
Google Scholar
Matthies, L., Brockers, R., Kuwata, Y., Weiss, S.: Stereo Vision-Based Obstacle Avoidance for Micro Air Vehicles Using Disparity Space. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3242–3249. IEEE (2014)
Mellinger, D., Kumar, V.: Minimum Snap Trajectory Generation and Control for Quadrotors. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2520–2525. IEEE (2011)
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv:1312.5602 (2013)
Naidoo, Y., Stopforth, R., Bright, G.: Development of an Uav for Search & Rescue Applications. In: IEEE Africon’11, pp. 1–6. IEEE (2011)
Natalizio, E., Surace, R., Loscri, V., Guerriero, F., Melodia, T.: Filming sport events with mobile camera drones: Mathematical modeling and algorithms (2012)
Ng, A.Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., Liang, E.: Autonomous inverted helicopter flight via reinforcement learning. In: Experimental Robotics IX, pp. 363–372. Springer (2006)
Oleynikova, H., Honegger, D., Pollefeys, M.: Reactive Avoidance Using Embedded Stereo Vision for Mav Flight. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 50–56. IEEE (2015)
Oleynikova, H., Taylor, Z., Siegwart, R., Nieto, J.: Safe local exploration for replanning in cluttered unknown environments for microaerial vehicles. IEEE Robot. Autom. Lett 3(3), 1474–1481 (2018)
Article
Google Scholar
Pomerleau, D.A.: Alvinn: An autonomous land vehicle in a neural network. In: Advances in Neural Information Processing Systems, pp. 305–313 (1989)
Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Robotics Research, pp. 649–666. Springer (2016)
Ross, S., Bagnell, D.: Efficient reductions for imitation learning. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 661–668 (2010)
Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and structured prediction to no-regret online learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 627–635 (2011)
Ross, S., Melik-Barkhudarov, N., Shankar, K.S., Wendel, A., Dey, D., Bagnell, J.A., Hebert, M.: Learning monocular reactive Uav control in cluttered natural environments. In: 2013 IEEE International Conference on Robotics and Automation, pp. 1765–1772. IEEE (2013)
Sanket, N.J., Singh, C.D., Ganguly, K., Fermüller, C., Aloimonos, Y.: Gapflyt: Active vision based minimalist structure-less gap detection for quadrotor flight. IEEE Robot. Autom. Lett 3(4), 2799–2806 (2018)
Article
Google Scholar
Scherer, S., Rehder, J., Achar, S., Cover, H., Chambers, A., Nuske, S., Singh, S.: River mapping from a flying robot: state estimation, river detection, and obstacle mapping. Auton. Robot. 33(1-2), 189–214 (2012)
Article
Google Scholar
Scherer, S., Singh, S., Chamberlain, L., Saripalli, S.: Flying fast and low among obstacles. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 2023–2029. IEEE (2007)
Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In: Field and Service Robotics (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)
Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A Benchmark for the Evaluation of Rgb-D Slam Systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–580. IEEE (2012)
Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT Press, Cambridge (2018)
MATH
Google Scholar
Tordesillas, J., How, J.P.: PANTHER: Perception-aware trajectory planner in dynamic environments. arXiv:2103.06372 (2021)
Tordesillas, J., Lopez, B.T., Carter, J., Ware, J., How, J.P.: Real-time planning with multi-fidelity models for agile flights in unknown environments. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 725–731. IEEE (2019)
Valavanis, K.P., Vachtsevanos, G.J.: Handbook of unmanned aerial vehicles, vol. 1 Springer (2015)
Warren, M., Greeff, M., Patel, B., Collier, J., Schoellig, A.P., Barfoot, T.D.: There’s no place like home: Visual teach and repeat for emergency return of multirotor uavs during gps failure. IEEE Robotics and Automation Letters 4(1), 161–168 (2018)
Article
Google Scholar
Wen, H., Clark, R., Wang, S., Lu, X., Du, B., Hu, W., Trigoni, N.: Efficient indoor positioning with visual experiences via lifelong learning. IEEE Trans. Mob. Comput. 18(4), 814–829 (2018)
Article
Google Scholar
Yang, J., Rao, D., Chung, S.J., Hutchinson, S.: Monocular vision based navigation in Gps-denied riverine environments. In: Infotech@ Aerospace 2011, p. 1403 (2011)
Zhou, B., Gao, F., Wang, L., Liu, C., Shen, S.: Robust and efficient quadrotor trajectory generation for fast autonomous flight. IEEE Robot. Autom. Lett 4(4), 3529–3536 (2019)
Article
Google Scholar