Skip to main content
Log in

3D Map Exploration Using Topological Fourier Sparse Set

  • Short paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

3D map exploration is one of key technologies in robotics. However, finding an optimal exploration path is a challenge due to unknown environments. This research proposed the Topological Fourier Sparse Set (TFSS) algorithm to enable an unmanned aerial vehicle (UAV) to explore 3D environments with theoretical guarantees. The algorithm combines the Rips complex with Fourier sparse set representation to take the advantages of topological and submodular approaches. More specifically, the Rips complex is used for expanding the exploration subgoals, while the Fourier sparse set encodes a learned representation of the subgoal selection problem in the form of a submodular optimization problem. Since the objective function of spatial exploration is reformulated as a maximizing submodular function with path constraints, greedy algorithms can achieve \(\frac {1}{2}(1-e^{-1})\) of the optimum. Experiments conducted with this algorithm demonstrates that the TFSS explores unknown environments \(25\% \sim 127\%\) more than the NBV algorithm does. The TFSS exploration performance is close to the SFSS but it is 50 times faster than the SFSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abed-alguni, B., Paul, D.J.: Hybridizing the cuckoo search algorithm with different mutation operators for numerical optimization problems. J. Intell. Syst. 29(1), 1043–1062 (2019)

    Article  Google Scholar 

  2. Adams, H., Carlsson, G.: Evasion paths in mobile sensor networks. Int. J. Robot. Res. 34, 90–104 (2015)

    Article  Google Scholar 

  3. Alkhateeb, F., Abed-alguni, B.: A hybrid cuckoo search and simulated annealing algorithm. J. Intell. Syst. 28(4), 683–698 (2019)

    Article  Google Scholar 

  4. Balcan, M.F., Harvey, N.J.: Learning submodular functions. In: Proceedings of the 43rd annual ACM symposium on Theory of computing (2011)

  5. Baraniuk, R.: Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  6. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2, 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bhattacharya, S., Ghrist, R., Kumar, V.: Persistent homology for path planning in uncertain environments. IEEE Trans. Robot. 31(3), 578–590 (2015)

    Article  Google Scholar 

  8. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon “next–best–view” planner for 3d exploration. IEEE International Conference on Robotics and Automation (2016)

  9. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon path planning for 3d exploration and surface inspection. Auton. Robot. 42(2), 291–306 (2018)

    Article  Google Scholar 

  10. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.: Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  11. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transaction on Information Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  12. Chaslot, G.M.B., Winands, M.H., Szita, I., van den Herik, H.J.: Cross-entropy for monte-carlo tree search. Icga Journal 31(3), 145–156 (2008)

    Article  Google Scholar 

  13. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret. Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  Google Scholar 

  14. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

    Article  MathSciNet  Google Scholar 

  15. Derenick, J., Kumar, V., Jadbabaie, A.: Towards simplicial coverage repair for mobile robot teams. IEEE International Conference on Robotics and Automation (2010)

  16. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping (SLAM): part i. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  17. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  Google Scholar 

  18. Ghrist, R.: Elementary applied topology. Createspace (2014)

  19. González-Baños, H.H., Latombe, J.C.: Navigation strategies for exploring indoor environments. Int. J. Robot. Res. 21, 829–848 (2002)

    Article  Google Scholar 

  20. Govindarajan, V., Bhattacharya, S., Kumar, V.: Human-robot collaborative topological exploration for search and rescue applications. Distrib. Autonom. Robot. Syst. 112, 17–32 (2016)

    Article  Google Scholar 

  21. Heng, L., Gotovos, A., Krause, A., Pollefeys, M.: Efficient visual exploration and coverage with a micro aerial vehicle in unknown environments. IEEE International Conference on Robotics and Automation (2015)

  22. Hollinger, G., Choudhuri, C., Mitra, U., Sukhatme, G.S.: Squared error distortion metrics for motion planning in robotic sensor networks. In: Proceedings International Workshop Wireless Networking for Unmanned Autonomous Vehicles, pp 1426–1431 (2013)

  23. Hollinger, G., Singh, S.: Proofs and experiments in scalable, near-optimal search by multiple robots. Robotics: Science and Systems 1426–1431 (2008)

  24. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf. Process. Lett. 70(1), 39–45 (1999)

    Article  MathSciNet  Google Scholar 

  25. LaValle, S.M. Jr, J.J.K: Randomized kinodynamic planning. IEEE International Conference on Robotics and Automation 473–479 (1999)

  26. Lu, B.X., Tseng, K.S.: 3d map exploration via learning submodular functions in the fourier domain. International Conference on Unmanned Aircraft Systems (ICUAS) (2020)

  27. Lu, B.X., Wu, J.J., Tsai, Y.C., Jiang, W.T., Tseng, K.S.: A novel telerobotic search system using an unmanned aerial vehicle. IEEE International Conference on Robotic Computing (2020)

  28. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions. Math. Program. 14, 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  29. Rabadan, R., Blumberg, A.J.: Topological data analysis for genomics and evolution. Cambridge University Press (2019)

  30. Ramaithitima, R., Whitzer, M., Bhattacharya, S., Kumar, V.: Sensor coverage robot swarms using local sensing without metric information. IEEE International Conference on Robotics and Automation (2015)

  31. S, Q., Islamabad, P., Bilal, R., Iqbal, W., Naureen, M.: Compressive sensing: from theory to applications, a survey. J. Commun. Netw. 15(5), 443–456 (2013)

    Article  Google Scholar 

  32. Schmidt, M.: Least squares optimization with l1-norm regularization (2005)

  33. de Silva, V., Ghrist, R.: Coordinate-free coverage in sensor networks with controlled boundaries via homology. Int. J. Robot. Res. 25(12), 1205–1222 (2006)

    Article  Google Scholar 

  34. Singh, A., Krause, A., Kaiser, W.: Nonmyopic adaptive informative path planning for multiple robots. Int. Joint Conf. Artif. Intell. 1843–1850 (2009)

  35. Stobbe, P., Krause, A.: Learning fourier sparse set functions. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, pp 1125–1133 (2012)

  36. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Tsai, Y.C., Tseng, K.S.: Deep compressed sensing for learning submodular functions. Sensors 20(9), 2591 (2020)

    Article  Google Scholar 

  38. Tseng, K.S.: Learning in human and robot search: Subgoal, submodularity, and sparsity. University of Minnesota Ph.D dissertation (2016)

  39. Tseng, K.S.: Transfer learning of coverage functions via invariant properties in the fourier domain. Auton. Robot. 45, 519–542 (2021)

    Article  Google Scholar 

  40. Tseng, K.S., Mettler, B.: Near-optimal probabilistic search via submodularity and sparse regression. Autonomous Robots (2015)

  41. Tseng, K.S., Mettler, B.: Human planning and coordination in spatial search problems. 1st IFAC Conference on Cyber-Physical and Human-Systems (2016)

  42. Tseng, K.S., Mettler, B.: Near-optimal probabilistic search using spatial fourier sparse set. Autonomous Robots (2017)

  43. Tseng, K.S., Mettler, B.: Analysis of coordination patterns between gaze and control in human spatial search. 2nd IFAC Conference on Cyber-Physical and Human-Systems (2018)

  44. Tseng, K.S., Mettler, B.: Analysis and augmentation of human performance on telerobotic search problems. IEEE Access 8, 56,590–56,606 (2020)

    Article  Google Scholar 

  45. Wulfmeier, M., Ondruska, P., Posner, I.: Maximum entropy deep inverse reinforcement learning. Arxiv (2015)

  46. Wulfmeier, M., Wang, D.Z., Posner, I.: Maximum entropy deep inverse reinforcement learning. IEEE/RSJ International Conference on Intelligent Robots and Systems 2153–0866 (2016)

  47. Zhang, H., Vorobeychik, Y.: Submodular optimization with routing constraints. AAAI Conference on Artificial Intelligence (2016)

Download references

Acknowledgements

This research was completed thanks to the financial support from Taiwan MOST Grant 107-2218-E-008-017 and 108-2221-E-008-074-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Shih Tseng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 51.4 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, BX., Tseng, KS. 3D Map Exploration Using Topological Fourier Sparse Set. J Intell Robot Syst 104, 75 (2022). https://doi.org/10.1007/s10846-021-01565-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01565-1

Keywords

Navigation