Skip to main content
Log in

Human-in-the-Loop Control for AGoRA Unilateral Lower-Limb Exoskeleton

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Exoskeletons aim to provide required torques in a patient’s lower limbs generating anatomical patterns. In this sense, this work presents an AGoRA lower limb exoskeleton aimed at rehabilitating patients who suffer hemiparesis. Two control strategies for physical Human-Robot Interaction are tested in a pilot study with a healthy user. On the one hand, the assistance mode uses a gait phase detection to generate a desired gait cycle in the paretic limb. On the other hand, the transparency mode is presented to simulate a back-drivable device using a mass-damper system. As a result, in the assistance mode, torques in the range of (20 - 30 Nm) for the knee and hip joints were generated to complete the user’s gait cycle. Moreover, the user can execute unrestricted movements using the AGoRA exoskeleton in the transparency mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mayo clinic, ”stroke,” 2020. [Online]. Available: https://www.mayoclinic.org/es-es/diseases-conditions/stroke/symptoms-causes/syc-20350113

  2. Moreno, J.C., Brunetti, F., Navarro, E., Forner-Cordero, A., Pons, J.L.: Analysis of the human interaction with a wearable lower-limb exoskeleton. Applied Bionics and Biomechanics 6(2), 245–256 (2009)

    Article  Google Scholar 

  3. Lui, S.K., HaNguyen, M.: Elderly stroke rehabilitation : overcoming the complications. HIndawi 2018, 1–9 (2018)

    Google Scholar 

  4. Fernández-Merjildo, D., Trujillo, E.N.: Accidente cerebrovascular en un adulto joven con deficiencia de proteína S y foramen oval patente. Reporte de caso. Med Hered 27, 46–49 (2016)

    Article  Google Scholar 

  5. Vincent, Y., Chan, L., Carruthers, K.J.: Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the united states: Stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pa. Archives of Physical Medicine and Rehabilitation 95(5), 986–995.e1 (2014)

    Article  Google Scholar 

  6. Mlinac, M.E., Feng, M.C.: Assessment of activities of daily living, Self-Care, and independence. Arch. Clin. Neuropsychol. 31, 506–516 (2016)

    Article  Google Scholar 

  7. Li, P., Zang, X.-Y., Wang, Y., Chai, Q.-W., Wang, J.-Y., Sun, C.-Y., Zhang, Q.: Factors associated with activities of daily living among the disabled elders with stroke. International Journal of Nursing Sciences 3(1), 29–34 (2016)

    Article  Google Scholar 

  8. Tan, C.K., Kadone, H., Watanabe, H., Marushima, A., Yamazaki, M., Sankai, Y., Suzuki, K.: Lateral symmetry of synergies in Lower Limb muscles of acute post-stroke patients after robotic interventio. Frontiers in Neuroscience 12(APR), 1–13 (2018)

    Google Scholar 

  9. Kili ç, Z., Erhan, B., Gündüz, B., Iskaelvan, G.: Central Post-Stroke pain in stroke patients: incidence and the effect on quality of life. Turkish Society of Physical Medicine and Rehabilitation 61, 142–147 (2015)

    Google Scholar 

  10. Hesse, S., Werner, C., Paul, T., Bardeleben, A., Chaler, J.: Influence of walking speed on lower limb muscle activity and energy consumption during treadmill walking of hemiparetic patients. Arch. Phys. Med. Rehabil. 82(11), 1547–1550 (2001)

    Article  Google Scholar 

  11. Hidler, J.M., Carroll, M., Federovich, E.H.: Strength and coordination in the paretic leg of individuals following acute stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 526–534 (2007)

    Article  Google Scholar 

  12. Hutin, E., Pradon, D., Barbier, F., Gracies, J.-M., Bussel, B., Roche, N.: Lower limb coordination patterns in hemiparetic gait: Factors of knee flexion impairment. Clinical Biomechanics 26(3), 304–311 (2011)

    Article  Google Scholar 

  13. Hutin, E., Pradon, D., Barbier, F., Bussel, B., Gracies, J.-M., Roche, N.: Walking velocity and lower limb coordination in hemiparesis. Gait and Posture 36(2), 205–211 (2012)

    Article  Google Scholar 

  14. Iida, H., Yamamuro, T.: Kinetic analysis of the center of gravity of the human body in normal and pathological gaits. J. Biomech. 20(10), 987–995 (1987)

    Article  Google Scholar 

  15. Brandstater, M.E., de Bruin, H., Gowland, C., Clark, B.M.: Hemiplegic gait: Analysis of temporal variables. Arch. Phys. Med. Rehabil. 12, 583–587 (1983)

    Google Scholar 

  16. Olney, S.J., Gritfin, M.P., McBride, I.D.: Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: a regression approach. Phys. Ther. 74(9), 872–885 (1994)

    Article  Google Scholar 

  17. Goldberg, S.R., Anderson, F.C., Pandy, M.G., Delp, S.L.: Muscles that influence knee flexion velocity in double support: Implications for stiff-knee gait. Journal of Biomechanics 37 37, 1189–1196 (2004)

    Article  Google Scholar 

  18. Pollock, A., Baer, G., Langhorne, P., Pomeroy, V.: Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke: a systematic review. Clin. Rehabil. 21(5), 395–410 (2007)

    Article  Google Scholar 

  19. Mohan, U., Karthik babu, S., Vijaya Kumar, K., Suresh, B. V., Misri, Z. K., Chakrapani, M.: Effectiveness of mirror therapy on lower extremity motor recovery, balance and mobility in patients with acute stroke: a randomized sham-controlled pilot trial. Annals of Indian Academy of Neurology 16(4), 634–639 (2013)

    Article  Google Scholar 

  20. Yan, T., Hui-Chan, C.W.Y., Li, L.S.W.: Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: a randomized placebo-controlled trial. Stroke Journal of the American Heart Association 36(1), 80–85 (2005)

    Google Scholar 

  21. Sun, X., Gao, Q., Dou, H., Tang, .: Which is better in the rehabilitation of stroke patients, core stability exercises or conventional exercises?. The Journal of Physical Therapy Science Original 28(4), 1131–1133 (2016)

  22. Schaechter, J.D.: Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog. Neurobiol. 73, 61–72 (2004)

    Article  Google Scholar 

  23. Díaz, I., Gil, J.J., Applied, E.S.: Lower-Limb robotic rehabilitation: Literature review and challenges. J. Robot. 2011(i), 1–11 (2011)

    Google Scholar 

  24. Calabró, R.S., Cacciola, A., Berté, F., Manuli, A., Leo, A., Bramanti, A., Naro, A., Milardi, D., Bramanti, P.: Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?. Neurol. Sci. 37(4), 503–514 (2016)

    Article  Google Scholar 

  25. Viteckova, S., Kutilek, P., Jirina, M.: Wearable lower limb robotics: a review. Biocybernetics and Biomedical Engineering 33(2), 96–105 (2013)

    Article  Google Scholar 

  26. Kawainot, H., Lee, S., Kanbe, S., Sankai, Y.: Power assist method for HAL-3 using EMG-based Feedback controller. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 1648–1653 (2003)

  27. d’Elia, N., Vanetti, F., Cempini, M., Pasquini, G., Parri, A., Rabuffetti, M.: Physical human-robot interaction of an active pelvis orthosis: Toward ergonomic assessment of wearable robots. Journal of NeuroEngineering and Rehabilitation 14(1), 1–14 (2017)

    Google Scholar 

  28. Chen, G., Chan, C.K., Guo, Z., Yu, H.: A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Critical Reviews in Biomedical Engineering 41(4–5), 343–363 (2013)

    Article  Google Scholar 

  29. Martínez, A., Durrough, C., Goldfarb, M.: A Single-Joint implementation of flow control: knee joint walking assistance for individuals with mobility impairment. IEEE Trans. Neural Syst. Rehabil. Eng. 28(4), 934–942 (2020)

    Article  Google Scholar 

  30. Liu, X., Wang, Q.: Real-Time Locomotion mode recognition and assistive torque control for unilateral knee exoskeleton on different terrains. IEEE/ASME Transactions on Mechatronics 4435, 1–1 (2020)

    Google Scholar 

  31. Van Ham, R., Vanderborght, B., Van Damme, M., Verrelst, B., Lefeber, D.: MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator : Design and implementation in a biped robot. Robot. Auton. Syst. 55, 761–768 (2007)

    Article  Google Scholar 

  32. Schrade, S.O., Nager, Y., Amy, R.W., Gassert, R., Ijspeert, A.: Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator. In: International Conference on Rehabilitation Robotics, pp. 1387–1394 (2017)

  33. Wei, D., Li, Z., Wei, Q., Su, H., Song, B., He, W., Li, J.: Human-in-the-loop control strategy of unilateral exoskeleton robots for gait rehabilitation IEEE Trans. IEEE Transactions on Cognitive and Developmental Systems (2019)

  34. Villa-Parra, A.C., Delisle-Rodriguez, D., Lima, J.S., Frizera-Neto, A., Bastos, T.: Knee impedance modulation to control an active orthosis using insole sensors. Sensors (Switzerland) 17(12), 1–18 (2017)

    Article  Google Scholar 

  35. Moreno, J.C., Brunetti, F.J., Pons, J.L., Baydal, J.M., Barberà, R.: Rationale for multiple compensation of muscle weakness walking with a wearable robotic orthosis. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 1914–1919 (2005)

  36. Martínez, A., Lawson, B., Durrough, C., Goldfarb, M.: A Velocity-Field-Based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Trans. Robot. 35(2), 307–316 (2019)

    Article  Google Scholar 

  37. Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. In: Conference on Rehabilitation Robotics, pp. 401–407 (2007)

  38. Banala, S.K., Kim, S.H., Agrawal, S.K., Scholz, J.P.: Robot assisted gait training with active leg exoskeleton (ALEX). Rehabilitation 17(1), 2–8 (2009)

    Google Scholar 

  39. Yi, L., Zhi-jiang, D., Wang, W., Dong, W.: Development of a wearable exoskeleton rehabilitation system based on hybrid control mode. Int. J. Adv. Robot. Syst. 13(5), 1–10 (2016)

    Google Scholar 

  40. Park, Y.-L., Chen, B.-R., Perez-Arancibia, N.O., Young, D., Stirling, L., Wood, R.J., Goldfiel, E.C., Nagpal, R.: Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation. Bioinspiration and Biomimetics 9(1), 1–17 (2014)

    Article  Google Scholar 

  41. Tucker, M.R., Shirota, C., Lambercy, O., Sulzer, J.S., Gassert, R.: Design and Characterization of an Exoskeleton for Perturbing the Knee during Gait,. IEEE Trans. Biomed. Eng. 64(10), 2331–2343 (2017)

    Article  Google Scholar 

  42. Sanchez-Manchola, M., Gomez-Vargas, D., Casas-Bocanegra, D., Munera, M., Cifuentes, C.A.: Development of a Robotic Lower-Limb Exoskeleton for Gait rehabilitation: AGoRA Exoskeleton. In: 2018 IEEE ANDESCON, ANDESCON 2018 - Conf. Proc., pp. 1–6 (2018)

  43. Chung, S., Lim, J., Ju Noh, K., Kim, G.G., Jeong, H.T.: Sensor positioning and data acquisition for activity recognition using deep learning. In: 9th International Conference on Information and Communication Technology convergence: ICT Convergence Powered by Smart Intelligence, ICTC 2018, pp. 154–159 (2018)

  44. Sánchez Manchola, M.D., Pinto Bernal, M.J., Munera, M., Cifuentes, C.A.: Gait phase detection for lower-limb exoskeletons using foot motion data from a single inertial measurement unit in hemiparetic individuals. Sensors (Switzerland) 19(13), 1–24 (2019)

    Article  Google Scholar 

  45. motors, M.: Maxon Flat EC motor, no. (2017)

  46. Corke, P.: Robotics, vision and control. First edit. vol. 73, no. 5, pp. 137–217 (2011)

  47. Li, X., Pan, Y., Chen, G., Yu, H.: Multi-modal control scheme for rehabilitation robotic exoskeletons. Int. J. Rob. Res. 36, 1–19 (2017)

    Article  Google Scholar 

  48. Drive, H.: Speed Reducers for Precision Motion Control. HarmonicDrive (2018)

  49. Quresh, M.H., Masood, Z., Rehman, L., Owais, M., Khan, M.U.: Biomechanical Design and Control of Lower Limb Exoskeleton for Sit-to-Stand and Stand-to-Sit Movements. In: IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA) Biomechanical, pp. 1–6 (2018)

  50. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics Modelling, Planning and Control, 1st edn. Springer, London (2009). https://doi.org/10.1007/978-1-84628-642-1

    Google Scholar 

  51. Yao, S., Zhuang, Y., Li, Z., Song, R.: Adaptive admittance control for an ankle exoskeleton using an EMG-driven musculoskeletal model. Frontiers in Neurorobotics 12, 1–12 (2018)

    Article  Google Scholar 

  52. Castro, C., Cucco, A., Dellatorre, L., M.J., B.N.: Estimación del peso total en personas amputadas en miembros inferiores. ReCAD – Revista electró,nica de Ciencias Aplicadas al Deporte 4(13), 1–7 (2011)

    Google Scholar 

  53. el zahraa Wehbi, F., Huo, W., Amirat, Y., El Rafei, M., Khalil, M., Mohammed, S.: Active impedance control of a knee-joint orthosis during swing phase. In: International Conference on Rehabilitation Robotics (ICORR), pp. 435–440 (2017)

  54. Veneman, J.F., Kruidhof, R., Hekman, E.E.G., Ekkelenkamp, R., Van Asseldonk, E.H.F., van der Kooij, H.: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379–386 (2007)

    Article  Google Scholar 

  55. Webster, J.B., Darter, B.J.: Principles of Normal and Pathologic Gait. In: Atlas of Orthoses and Assistive Devices, Fifth Edit., pp. 49-62.e1. Elsevier Inc.

  56. Semmlow, J.: The big picture: Bioengineering signals and systems. In Circuits, Signals and Systems for Bioengineers (3 Edition, pp. 1–50) (2018)

  57. Barjuei, E.S., Toxiri, S., Medrano-cerda, G.A., Caldwell, D.G., Ortiz, J.: Bond graph modeling of an exoskeleton actuator. In: 10th Computer Science and Electronic Engineering Conference CEEC 2018 - Proceedings (2019)

  58. Ghafari, A.S., Meghdari, A., Vossoughi, G.R.: A study on muscle activities through surface EMG for lower limb exoskeleton controller. In: Proceedings - 2013 IEEE Conference on Systems, Process and Control, ICSPC 2013, December, pp. 159–163 (2013)

  59. Gui, K., Liu, H., Zhang, D.: A generalized framework to achieve coordinated admittance control for multi-joint lower limb robotic exoskeleton. In: International Conference on Rehabilitation Robotics (ICORR), pp. 228–233 (2017)

  60. Goldie, P.A., Matyas, T.A., Evans, O.M.: Deficit and change in gait velocity during rehabilitation after stroke. Arch. Phys. Med. Rehabil. 77(10), 1074–1082 (1996)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministerio de Ciencia Tecnología e Innovación - Colombia (MinCiencias Grant ID No. 801-2017 and MinCiencias Grant ID No. 845-2020).

Author information

Authors and Affiliations

Authors

Contributions

All authors (Luis J. Arciniegas, Marcela Munera and Carlos A. Cifuentes) contributed to the study conception and design. Material preparation, data collection and analysis. The first draft of the manuscript was written by Luis J. Arciniegas and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Carlos A. Cifuentes.

Ethics declarations

Ethics Statement

The Colombian School of Engineering Julio Garavito ethics committee approved the protocol.

Competing interests

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article. The authors have no relevant non-financial interests to disclose.

Additional information

Availability of data and materials

Not applicable.

Consent to participate

Not applicable.

Consent to Publish

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayag, L.J.A., Múnera, M. & Cifuentes, C.A. Human-in-the-Loop Control for AGoRA Unilateral Lower-Limb Exoskeleton. J Intell Robot Syst 104, 3 (2022). https://doi.org/10.1007/s10846-021-01487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01487-y

Keywords

Navigation