Skip to main content
Log in

Enhanced Center Constraint Weighted A* Algorithm for Path Planning of Petrochemical Inspection Robot

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In many practical applications of robot path planning, finding the shortest path is critical, while the response time is often overlooked but important. To address the problems of search node divergence and long calculation time in the A* routing algorithm in the large scenario, this paper presents a novel center constraint weighted A* algorithm (CCWA*). The heuristic function is modified to give different dynamic weights to nodes in different positions, and the node weights are changed in the specified direction during the expansion process, thereby reducing the number of search nodes. An adaptive threshold is further added to the heuristic function to enhance the adaptiveness of the algorithm. To verify the effectiveness of the CCWA* algorithm, simulations are performed on 2-dimensional grid maps of different sizes. The results show that the proposed algorithm speeds up the search process and reduces the planning time in the process of path planning in a multi-obstacle environment compared with the conventional A* algorithm and weighted A* algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antikainen, H.: Using the hierarchical pathfinding A* algorithm in GIS to find paths through rasters with nonuniform traversal cost. ISPRS Int. J. Geo-Inf. 2(4), 996–1014 (2013). https://doi.org/10.3390/ijgi2040996

    Article  Google Scholar 

  2. Botea, A., Müller, M., Schaeffer, J.: Near optimal hierarchical path-finding (HPA*). J. Game Dev. 1, 7–28. (2004)

  3. Cui, Z.X., Gu, Z.H.: Shortest path search of game map based on A* algorithm. Softw. Guide 17, 145–147. https://doi.org/CNKI:SUN:RJDK.0.2007-17-067 (2007)

  4. Dean, T., Boddy, M.: An analysis of time-dependent planning. In: Seventh National Conference on Artificial Intelligence (AAAI 88), pp 49–54. Springer, Paul (1988)

  5. Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, T., Jurišica, L.: Path planning with modified a star algorithm for a mobile robot. Procedia. Eng. 96, 59–69 (2014). https://doi.org/10.1016/j.proeng.2014.12.098

    Article  Google Scholar 

  6. Gao, M.D., Zhang, Y.N., Zhu, L.Y.: Bidirectional time-efficient A*algorithm for robot path planning. Appl. Res. Comput. 36(3), 792–795 + 800. https://doi.org/10.19734/j.issn.1001-3695.2017.10.0982 (2019)

  7. Ge, K.W., Wang, B.P.: Global path planning method for mobile logistics robot based on raster graph method. Bullet. Sci. Technol. 35(11), 72–75 + 80. https://doi.org/10.13774/j.cnki.kjtb.2019.11.013 (2019)

  8. Geraerts, R., Overmars, M.H.: A Comparative Study of Probabilistic Roadmap Planners. Springer, Berlin. https://doi.org/10.1007/978-3-540-45058-0∖_4 (2002)

  9. Golda, A.F., Aridha, S., Elakkiya, D.: Algorithmic agent for effective mobile robot navigation in an unknown environment. In: 2009 International Conference on Intelligent Agent and Multi-Agent Systems, pp. 1–4. Chennai. https://doi.org/10.1109/IAMA.2009.5228050 (2009)

  10. Goldberg, A. V., Harrelson, C.: Computing the shortest path: A* search meets graph theory. In: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms. https://doi.org/10.1145/1070432.1070455, pp 156–165. Vancouver, British (2004)

  11. Gong, J.h.: Depth first search algorithm and its improvement. Modern Electron. Technol. (22):90–92. https://doi.org/10.3969/j.issn.1004-373X.2007.22.032 (2007)

  12. Gu, C.: Application of improved A* algorithm in robot path planning. Electron. Des. Eng. 22(19), 96–98 + 102. https://doi.org/10.3969/j.issn.1674-6236.2014.19.031

  13. Han, J., Seo, Y.: Mobile robot path planning with surrounding point set and path improvement. Appl. Soft. Comput. 57, 35–47 (2017). https://doi.org/10.1016/j.asoc.2017.03.035

    Article  Google Scholar 

  14. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968). https://doi.org/10.1145/1056777.1056779

    Article  Google Scholar 

  15. Jetto, L., Longhi, S., Venturini, G.: Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots. IEEE Trans. Robot. Autom. 15(2), 219–229 (1999). https://doi.org/10.1109/70.760343

    Article  Google Scholar 

  16. Jiang, L., Li, J., Ma, X. X., Nie, W. K., Zhu, J. Y., Lei, B.: Voronoi path planning based on improved skeleton extraction. J. Mech. Eng. 56(13), 138–148 (2020). https://doi.org/10.3901/JME.2020.13.138

    Article  Google Scholar 

  17. Korf, R. E.: Depth-first iterative-deepening: an optimal admissible tree search. Artif. Intell. 27 (1), 97–109 (1985). https://doi.org/10.1016/0004-3702(86)90035-4

    Article  MathSciNet  Google Scholar 

  18. LaValle, S.: Planning Algorithms. https://doi.org/10.1017/CBO9780511546877 (2006)

  19. Li, M., Zhang, Y., Li, S.: The Gradational route planning for aircraft stealth penetration based on genetic algorithm and sparse a-star algorithm. MATEC Web Conf. 151, 04001. https://doi.org/10.1051/matecconf/201815104001 (2018)

  20. Lin, M., Yuan, K., Shi, C., Wang, Y.: Path planning of mobile robot based on improved a algorithm. In: 2017 29Th Chinese Control and Decision Conference (CCDC). https://doi.org/10.1109/CCDC.2017.7979125, pp 3570–3576. Chongqing (2017)

  21. Liu, P., Yu, H., Cang, S.: Optimized adaptive tracking control for an underactuated vibro-driven capsule system. Nonlinear Dyn. 94(3), 1803–1817 (2018). https://doi.org/10.1007/s11071-018-4458-9

    Article  Google Scholar 

  22. Liu, P., Yu, H., Cang, S.: Adaptive neural network tracking control for underactuated systems with matched and mismatched disturbances. Nonlinear Dyn. 98(2), 1447–1464 (2019). https://doi.org/10.1007/s11071-019-05170-8

    Article  Google Scholar 

  23. Liu, P., Yu, H., Cang, S.: Geometric analysis-based trajectory planning and control for underactuated capsule systems with viscoelastic property. Trans. Inst. Meas. Control. 40(7), 2416–2427 (2018). https://doi.org/10.1177/0142331217708833

    Article  Google Scholar 

  24. Liu, S.W., Ma, Y., Meng, S.F., Sun, S.Q.: Improved A* algorithm for path planning of AGV. J. Comput. Appl. 39(S2), 41–44. https://doi.org/CNKI:SUN:JSJY.0.2019-S2-008 (2019)

  25. Lu, Y. L., Fan, X. P., Zhang, H.: Heuristic search assisted active localization for mobile robot. Robot 34(5), 590–595 (2012). https://doi.org/10.3724/SP.J.1218.2012.00590

    Article  Google Scholar 

  26. Mac, T., Copot, C., Tran, D., Keyser, R.: Heuristic approaches in robot path planning: A survey. Robot. Auton. Syst. 86, 13–28 (2016). https://doi.org/10.1016/j.robot.2016.08.001

    Article  Google Scholar 

  27. Meng, B., Gao, X.: UAV path planning based on bidirectional sparse A* research algorithm. In: 2010 International Conference on Intelligent Computation Technology and Automation, vol. 3, pp. 1106–1109, Changsha. https://doi.org/10.1109/ICICTA.2010.235 (2010)

  28. Neto, A., Macharet, D., Campos, M.: On the Generation of Trajectories for Multiple UAVs in Environments with Obstacles. J. Intell. Robot. Syst. 57, 123–141 (2011). https://doi.org/10.1007/s10846-009-9365-3

    Article  Google Scholar 

  29. Wang, P., Lin, H. T., Wang, T.S.: An improved ant colony system algorithm for solving the IP traceback problem. Inform. Sci. 326(1), 172–187 (2016). https://doi.org/10.1016/j.ins.2015.07.006

    Article  Google Scholar 

  30. Pohl, I.: Heuristic Search Viewed as Path Finding in a Graph 1(3), 193–204. https://doi.org/10.1016/0004-3702(70)90007-X (1970)

  31. Qin, Y.X., Wang, H.Q., Du, C.J.: Path Planning of Mobile Robot Based on Double-layer A* Algorithm. Manuf. Autom. 36(24), 21–25 + 40. https://doi.org/10.3969/j.issn.1009-0134.2014.24.006 (2014)

  32. Shim, H. S., Kim, H. S., Jung, M. J., Choi, I. H., Kim, J. H., Kim, J. O.: Designing distributed control architecture for cooperative multi-agent system and its real-time application to soccer robot. Robot. Auton. Syst. 21, 149–165 (1997). https://doi.org/10.1016/S0921-8890(97)00023-7

    Article  Google Scholar 

  33. Shyam, R.A., Lightbody, P., Das, G., Liu, P., Gomez-Gonzalez, S., Neumann, G.: Improving local trajectory optimisation using probabilistic movement primitives. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2666–2671. https://doi.org/10.1109/IROS40897.2019.8967980 (2019)

  34. Song, B., Wang, Z., Zou, L.: On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm. Cogn. Comput. 9, 5–17. https://doi.org/10.1007/s12559-016-9442-4 (2017)

  35. Sudhakara, P., Ganapathy, V., Balasubramanian, P., Sundaran, K.: Obstacle avoidance and navigation planning of a wheeled mobile robot using amended artificial potential field method. Procedia Comput. Sci. 133, 998–1004. https://doi.org/10.1016/j.procs.2018.07.076 (2018)

  36. Tahir, Z., Qureshi, A., Ayaz, Y., Nawaz, R.: Potentially guided bidirectionalized RRT* for fast optimal path planning in cluttered environments. Robot. Auton. Syst. 108, 13–27. https://doi.org/10.1016/j.robot.2018.06.013 (2018)

  37. Uttendorf, S., Eilert, B., Overmeyer, L.: Combining a fuzzy inference system with an A* algorithm for the automated generation of roadmaps for Automated Guided Vehicles at - Automatisierungstechnik 65(3). https://doi.org/10.1515/auto-2016-0081 (2017)

  38. Wang, D.J.: Indoor mobile-robot path planning based on an improved A*algorithm. J. Tsinghua Univ. (Sci. Technol.) 52(8), 1085–1089. https://doi.org/CNKI:SUN:QHXB.0.2012-08-013 (2012)

  39. Wang, H. M., Zhou, X.Z.: Improvement and realization of Beelinear optimizing A* algorithm in shortest path problem. J. Eng. Graph. 30(6), 121–126 (2009). https://doi.org/10.1360/972009-1549

    Google Scholar 

  40. Wang, H.W., Ma, Y., Xie, Y., Guo, M.: Mobile robot optimal path planning based on smooth A* algorithm. J. Tongji Univ. (Natural Sci. Edn.) 38(11), 1647–1650 + 1655. https://doi.org/10.3969/j.issn.0253-374x.2010.11.016 (2010)

  41. Wang, Z., Feng, X., Qin, H. D., Guo, H. M., Han, G.J.: An AUV-aided routing protocol based on dynamic gateway nodes for underwater wireless sensor networks. J. Internet Technol. 18(2), 333–343 (2017). https://doi.org/10.6138/JIT.2017.18.2.20161122

    Google Scholar 

  42. Wodzinski, M., Krzyżanowska, A.: Sequential classification of palm gestures based on A* algorithm and MLP neural network for quadrocopter control. Metrol. Measur. Syst. 24(2), 265–276 (2017). https://doi.org/10.1515/mms-2017-0021

    Article  Google Scholar 

  43. Xin, Y., Liang, H. W., Du, M. B., Mei, T., Wang, L. Z., Jiang, R. H.: An improved A* algorithm for searching infinite neighborhoods. Robot 36(5), 627–633 (2014). https://doi.org/10.13973/j.cnki.robot.2014.0627

    Google Scholar 

  44. Xu, S.Y.: On two distances sets in Euclidean space. J. China Inst. Metrol. 13(1), 16–18 (2002). https://doi.org/10.3969/j.issn.1004-1540.2002.01.002

    Google Scholar 

  45. Zhao, X.C., Luo, Q.S., Han, B.L.: Review of robot multi-sensor information fusion. Transd.Microsyst. Technol. 27(8), 1–4 + 11. https://doi.org/10.3969/j.issn.1000-9787.2008.08.001 (2008)

  46. Zhu, H. Y., Yuan, Y.: Optimal path search based on improved A* algorithm. Comput. Technol. Dev. 28(04), 55–59 (2018). https://doi.org/10.3969/j.issn.1673-629X.2018.04.012

    Google Scholar 

Download references

Funding

This work was supported in part by the Open Fund of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation under Grant PLN2020-10, in part by the Sichuan Science and Technology Department Application Foundation Project under Grant 2019YJ0311, in part by the State Administration of National Security Project under Grant Sichuan-0006-2018AQ, in part by the Open Fund of the Key Laboratory of Oil and Gas Equipment, Ministry of Education under Grant OGE201702-06.

Author information

Authors and Affiliations

Authors

Contributions

Xin Lai is responsible for overall design, programming and writing, Jiahe Li is responsible for programming and writing, and Jonathon Chambers is responsible for overall guidance and proofreading.

Corresponding author

Correspondence to Xin Lai.

Ethics declarations

Competing Interests

The authors declare no competing interest.

Additional information

Ethical Approval

Conflict of interests The authors declare that they have no conflict of interest.

Consent to Participate

The authors consent to participate.

Consent to Publish

The authors consent to Publish.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, X., Li, J. & Chambers, J. Enhanced Center Constraint Weighted A* Algorithm for Path Planning of Petrochemical Inspection Robot. J Intell Robot Syst 102, 78 (2021). https://doi.org/10.1007/s10846-021-01437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01437-8

Keywords

Navigation