Skip to main content
Log in

Non-cascade Adaptive Sliding Mode Control for Quadrotor UAVs under Parametric Uncertainties and External Disturbance with Indoor Experiments

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In the field of unmanned aerial vehicles (UAVs), quadrotors are receiving considerable attention because of their potential application to industries such as transportation, inspection, and search and rescue. One of the key challenges is to robustly control the position and attitude of a UAV amid the mass and inertia uncertainties, as well as the external disturbances, that exist in the real environment. To meet these demands, this paper proposes a non-cascade adaptive sliding mode control (SMC) strategy for quadrotor trajectory tracking control. To represent real flight conditions, system dynamics are developed with unknown mass and moment of inertia while external disturbances are taken into account. Numerical simulation and indoor flight experiments are performed to verify the effectiveness of the proposed adaptive SMC strategy. In the indoor experiments, to illustrate robustness several experiments are carried out to compare the proposed design with the conventional cascade structure controller: (1) inherent inertia uncertainty, (2) mass uncertainties plus (1), and (3) external disturbance plus (2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faessler, M., Franchi, A., Scaramuzza, D.: Differential Flatness of quadrotor dynamics subject to rotor drag for accurate tracking of High-Speed trajectories. IEEE Robot. Autom. Lett. 3(2), 620–626 (2018)

    Article  Google Scholar 

  2. Amin, R., Aijun, L., Shamshirband, S.: A review of quadrotor UAV: control methodologies and performance evaluation. Int. J. Autom. Control 10(2), 87–103 (2016)

    Article  Google Scholar 

  3. Emran, B.J., Najjaran, H.: A Review of quadrotor: An underactuated mechanical system. Annu. Rev. Control. 46, 165–180 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bouabdallah, S., Noth, A., Siegwart, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Sendai Japan, pp 2451–2456 (2004)

  5. Pounds, P., Mahony, R., Corke, P.: Modelling and control of a large quadrotor robot. Control Eng. Pract. 18(7), 691–699 (2010)

    Article  Google Scholar 

  6. Rinaldi, F., Chiesa, S., Quagliotti, F.: Linear quadratic control for quadrotors UAVs dynamics and formation flight. J. Intell. Robot. Syst. 70(1-4), 203–220 (2013)

    Article  Google Scholar 

  7. Mistler, V., Benallegue, A., M’sirdi, N.K.: Exact linearization and noninteracting control of a 4 rotors helicopter via dynamic feedback. In: 10th IEEE Int. Workshop on Robot and Human Interactive Communication, Paris France, pp 586–593 (2001)

  8. Mian, A.A., Wang, D.: Dynamic modeling and nonlinear control strategy for an underactuated quad rotor rotorcraft. J. Zhejiang Univ. Sci. A 9(4), 539–545 (2008)

    Article  Google Scholar 

  9. Voos, H.: Nonlinear control of a quadrotor micro-UAV using feedback-linearization. In: 2009 IEEE Int. Conf. on Mechatronics, pp 1–6 (2009)

  10. Kendoul, F., Yu, Z, Nonami, K.: Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles. J. Field Robot 27(3), 311–334 (2010)

    Article  Google Scholar 

  11. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electro-Mechanical Systems. CRC Press, Boca Raton (2009)

    Google Scholar 

  12. Xu, R., Ozguner, U.: Sliding mode control of a quadrotor helicopter. In: 45th IEEE Conf. on Decision and Control, San Diego USA, pp 4957–4962 (2006)

  13. Lee, D., Kim, H.J., Sastry, S.: Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int. J. Control Autom. Syst. 7(3), 419–428 (2009)

    Article  Google Scholar 

  14. Luque-Vega, L., Castillo-Toledo, B., Loukianov, A.G.: Robust block second order sliding mode control for a quadrotor. J. Franklin I. 349(2), 719–739 (2012)

    Article  MathSciNet  Google Scholar 

  15. Jia, Z., Yu, J., Mei, Y., et al.: Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerosp. Sci. Technol. 68, 299–307 (2017)

    Article  Google Scholar 

  16. Huang, Y., Zheng, Z., Sun, L., et al.: Saturated adaptive sliding mode control for autonomous vessel landing of a quadrotor. IET Control Theory Appl. 12(13), 1830–1842 (2018)

    Article  MathSciNet  Google Scholar 

  17. Mobayen, S., Tchier, F.: A novel robust adaptive second-order sliding mode tracking control technique for uncertain dynamical systems with matched and unmatched disturbances. Int. J. Control Autom. Syst. 15(3), 1097–1106 (2017)

    Article  Google Scholar 

  18. Mofid, O., Mobayen, S.: Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties. ISA Trans 72, 1–14 (2018)

    Article  Google Scholar 

  19. Bouabdallah, S., Siegwart, R.: Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: 2005 IEEE Int. Conf. on Robotics and Automation (ICRA), Barcelona Spain, pp 2247–2252 (2005)

  20. González, I., Salazar, S., Lozano, R.: Chattering-free sliding mode altitude control for a quad-rotor aircraft: Real-time application. J. Intell. R.bot. Syst. 73, 137–155 (2014)

    Article  Google Scholar 

  21. Izaguirre-Espinosa, C., Muñoz-Vázquez, A.J., Sánchez-Orta, A., et al.: Attitude control of quadrotors based on fractional sliding modes: Theory and experiments. IET Control Theor. Appl. 10(7), 825–832 (2016)

    Article  MathSciNet  Google Scholar 

  22. Rios, H., Falcon, R., Gonzalez, O.A., et al.: Continuous sliding-mode control strategies for quadrotor robust tracking: Real-time application. IEEE Trans. Ind. Electron. 66(2), 1264–1272 (2019)

    Article  Google Scholar 

  23. Tian, B., Cui, J., Lu, H., et al.: Adaptive finite-time attitude tracking of quadrotors with experiments and comparisons. IEEE Trans. Ind. electron. 66(12), 9428–9438 (2019)

    Article  Google Scholar 

  24. Wang, J., Holzapfel, F., Peter, F.: Comparison of nonlinear dynamic inversion and backstepping controls with application to a quadrotor. In: CEAS Euro GNC Conference, Delft Netherlands, pp 1245–1263 (2013)

  25. Bouabdallah, S., Siegwart, R.: Full control of a quadrotor. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), San Diego USA, pp 153–158 (2007)

  26. Zuo, Z.: Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory Appl. 4(11), 2343–2355 (2010)

    Article  MathSciNet  Google Scholar 

  27. Huo, X., Huo, M., Karimi, H.R.: Attitude stabilization control of a quadrotor UAV by using backstepping approach. Math. Probl. Eng. 1–9 (2014)

  28. Fritsch, O., De Monte, P., Buhl, M., et al.: Quasi-static feedback linearization for the translational dynamics of a quadrotor helicopter. In: 2012 American Control Conference (ACC), Montreal Canada, pp 125–130 (2012)

  29. Umemoto, K., Ikeda, T., Matsuno, F.: Robust tracking control for multi-rotor UAVs using sliding mode control. Trans. Soc. Instrument Control Eng. 50(2), 170–176 (2014). (in Japanese)

    Article  Google Scholar 

  30. Wang, T., Umemoto, K., Endo, T., et al.: Dynamic hybrid position/force control for the quadrotor with a multi-degree-of-freedom manipulator. Artif. Life Robot. 24, 378–389 (2019)

    Article  Google Scholar 

  31. PX4 Autopilot Software: https://github.com/PX4/Firmware, Accessed 27 Nov 2018 (2018)

  32. Eager, D., Pendrill, A.M., Reistad, N.: Beyond velocity and acceleration: Jerk, snap and higher derivatives. Eur. J. Phys. 37, 1–11 (2016)

    Article  Google Scholar 

  33. Abdessameud, A., Tayebi, A.: Global trajectory tracking control of VTOL-UAVs without linear velocity measurements. Automatica 46(6), 1053–1059 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Tiehua Wang, Hardik Parwana, Kazuki Umemoto, Takahiro Endo, and Fumitoshi Matsuno. The first draft of the manuscript was written by Tiehua Wang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tiehua Wang.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 61.9 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Parwana, H., Umemoto, K. et al. Non-cascade Adaptive Sliding Mode Control for Quadrotor UAVs under Parametric Uncertainties and External Disturbance with Indoor Experiments. J Intell Robot Syst 102, 8 (2021). https://doi.org/10.1007/s10846-021-01351-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01351-z

Keywords

Navigation