Skip to main content
Log in

A Review of the Path Planning and Formation Control for Multiple Autonomous Underwater Vehicles

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Path planning and formation control are two of the most significant concepts which can be considered in multi-vehicle systems and particularly in autonomous underwater vehicles (AUVs). The cooperative implementation of complicated commands would lead to desirable results and increase the probability of success in the missions. Due to the nonlinear dynamics and environmental conditions, the cooperative control of AUVs is a challenging topic. The developments in AUV applications demonstrate the significance of research and development in path planning and formation control. Unlike ground or aerial autonomous vehicles, this field of study has not attracted considerable attention and further exploration is required as a result. The present paper reviews the different structures of formation control in AUVs and discusses their advantages and disadvantages. Besides formation control, the cooperative path planning of AUVs along with the limitations specific to the cooperative structure is taken into consideration in the present study. Moreover, avoiding any obstacle collision and preventing any encounter between group members are considered as critical issues in the formation control and cooperative path planning. Some areas are still open to investigation as implied by the technological suggestions, which will facilitate future research. At the end of the article, a simulated sample is given of the triangular formation path planning for AUVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellingham, J.G.: Platforms: Autonomous Underwater Vehicles, in Encyclopedia of Ocean Sciences (Second Edition), J.H. Steele, pp. 473–484. Academic Press, Oxford (2009)

    Google Scholar 

  2. Wynn, R.B., Huvenne, V.A.I., le Bas, T.P., Murton, B.J., Connelly, D.P., Bett, B.J., Ruhl, H.A., Morris, K.J., Peakall, J., Parsons, D.R., Sumner, E.J., Darby, S.E., Dorrell, R.M., Hunt, J.E.: Autonomous underwater vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience. Mar. Geol. 352, 451–468 (2014)

    Article  Google Scholar 

  3. Li, X., Zhu, D., Qian, Y.: A survey on formation control algorithms for multi-AUV system. Unmanned Syst. 2(04), 351–359 (2014)

    Article  Google Scholar 

  4. Oh, K.-K., Park, M.-C., Ahn, H.-S.: A survey of multi-agent formation control. Automatica. 53, 424–440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. González, D., et al.: A review of motion planning techniques for automated vehicles. IEEE Trans. Intell. Transp. Syst. 17(4), 1135–1145 (2015)

    Article  Google Scholar 

  6. Paden, B., Cap, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intel. Veh. 1(1), 33–55 (2016)

    Article  Google Scholar 

  7. Scharf, D.P., Hadaegh, F.Y., Ploen, S.R.: A survey of spacecraft formation flying guidance and control (Part 1): guidance. In: Proceedings of the American Control Conference, vol. 4–6, pp. 1733–1739. IEEE, Piscataway (2003)

  8. Scharf, D.P., Hadaegh, F.Y., Ploen, S.R.: A survey of spacecraft formation flying guidance and control. Part II: control. In: Proceedings of the 2004 American control conference, vol. 4, pp. 2976–2985. IEEE (2004)

  9. Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Robot. Syst. 57(1–4), 65–100 (2010)

    Article  MATH  Google Scholar 

  10. Dadkhah, N., Mettler, B.: Survey of motion planning literature in the presence of uncertainty: considerations for UAV guidance. J. Intell. Robot. Syst. 65(1–4), 233–246 (2012)

    Article  Google Scholar 

  11. Liu, G.-P., Zhang, S.: A survey on formation control of small satellites. Proc. IEEE. 106(3), 440–457 (2018)

    Article  Google Scholar 

  12. Zeng, Z., Lian, L., Sammut, K., He, F., Tang, Y., Lammas, A.: A survey on path planning for persistent autonomy of autonomous underwater vehicles. Ocean Eng. 110, 303–313 (2015)

    Article  Google Scholar 

  13. Li, D., Wang, P., Du, L.: Path planning technologies for autonomous underwater vehicles-a review. IEEE Access. 7, 9745–9768 (2018)

    Article  Google Scholar 

  14. Panda, M., Das, B., Subudhi, B., Pati, B.B.: A comprehensive review of path planning algorithms for autonomous underwater vehicles. Int. J. Autom. Comput. 17(3), 321–352 (2020)

  15. Zhuang, Y., Huang, H., Sharma, S., Xu, D., Zhang, Q.: Cooperative path planning of multiple autonomous underwater vehicles operating in dynamic ocean environment. ISA Trans. 94, 174–186 (2019)

    Article  Google Scholar 

  16. Emrani, S., Dirafzoon, A., Talebi, H.A.: Adaptive distributed formation control of multiple autonomous underwater vehicles. In: 2011 IEEE International Conference on Control Applications (CCA), pp. 693–698. IEEE, Denver (2011)

  17. Available from: http://www.scopus.com/. Accessed 2020

  18. Fossen, T.I.: Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons, Hoboken (2011)

  19. Sabet, M.T., Sarhadi, P., Zarini, M.: Extended and unscented Kalman filters for parameter estimation of an autonomous underwater vehicle. Ocean Eng. 91, 329–339 (2014)

    Article  Google Scholar 

  20. Prestero, T., Timothy, J.: Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle. Massachusetts Institute of Technology, Cambridge (2001)

  21. Fossen, T.I.: Guidance and control of ocean vehicles. Vol. 199. Wiley, New York (1994)

    Google Scholar 

  22. Desai, J.P., Ostrowski, J., Kumar, V.: Controlling formations of multiple mobile robots. In: Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), vol. 4, pp. 2864–2869. IEEE, Leuven (1998)

  23. Fahimi, F.: Non-linear model predictive formation control for groups of autonomous surface vessels. Int. J. Control. 80(8), 1248–1259 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, E., Gu, D.: Nonlinear formation-keeping and mooring control of multiple autonomous underwater vehicles. IEEE/ASME Trans. Mechatron. 12(2), 164–178 (2007)

    Article  MathSciNet  Google Scholar 

  25. Park, B.S.: Adaptive formation control of underactuated autonomous underwater vehicles. Ocean Eng. 96, 1–7 (2015)

    Article  Google Scholar 

  26. Das, B., Subudhi, B., Pati, B.B.: Co-operative control of a team of autonomous underwater vehicles in an obstacle-rich environment. J. Mar. Eng. Technol. 15(3), 135–151 (2016)

    Article  Google Scholar 

  27. Li, H., Xie, P., Yan, W.: Receding horizon formation tracking control of constrained underactuated autonomous underwater vehicles. IEEE Trans. Ind. Electron. 64(6), 5004–5013 (2016)

    Article  Google Scholar 

  28. Pang, S., et al.: Three-dimensional leader–follower formation control of multiple autonomous underwater vehicles based on line-of-sight measurements using the backstepping method. Proc. Inst. Mech. Eng., IMechE Conf. Part I: J. Syst. Control. Eng. 232(7), 819–829 (2018)

    Google Scholar 

  29. Qi, X., Cai, Z.-j.: Three-dimensional formation control based on nonlinear small gain method for multiple underactuated underwater vehicles. Ocean Eng. 151, 105–114 (2018)

    Article  Google Scholar 

  30. Bian, J., Xiang, J.: Three-dimensional coordination control for multiple autonomous underwater vehicles. IEEE Access. 7, 63913–63920 (2019)

    Article  Google Scholar 

  31. Li, J., Du, J., Chang, W.-J.: Robust time-varying formation control for underactuated autonomous underwater vehicles with disturbances under input saturation. Ocean Eng. 179, 180–188 (2019)

    Article  Google Scholar 

  32. Ul'yanov, S., Maksimkin, N.: Formation path-following control of multi-AUV systems with adaptation of reference speed. Mathematics in Engineering, Science & Aerospace (MESA). 3, 10 (2019)

  33. Wang, J., Wang, C., Wei, Y., Zhang, C.: Sliding mode based neural adaptive formation control of underactuated AUVs with leader-follower strategy. Appl. Ocean Res. 94, 101971 (2020)

    Article  Google Scholar 

  34. Cui, R., Ge, S.S., How, B.V.E., Choo, Y.S.: Leader-follower formation control of underactuated auvs with leader position measurement. In: 2009 IEEE international conference on robotics and automation, pp. 979–984. IEEE, Kobe (2009)

  35. Cui, R., Sam Ge, S., Voon Ee How, B., Sang Choo, Y.: Leader–follower formation control of underactuated autonomous underwater vehicles. Ocean Eng. 37(17–18), 1491–1502 (2010)

    Article  Google Scholar 

  36. Millán, P., et al.: Formation control of autonomous underwater vehicles subject to communication delays. IEEE Trans. Control Syst. Technol. 22(2), 770–777 (2013)

    Article  Google Scholar 

  37. Das, B., Subudhi, B., Pati, B.B.: Adaptive sliding mode formation control of multiple underwater robots. Arch. Control Sci. 24(4), 515–543 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cui, D., Englot, B., Cui, R., Demin, X.: Decentralized formation control of multiple autonomous underwater vehicles with input saturation using RISE feedback method. In: OCEANS 2018 MTS/IEEE Charleston, pp. 1–6. IEEE, Charleston Oct (2018)

  39. Gao, Z., Guo, G.: Adaptive formation control of autonomous underwater vehicles with model uncertainties. Int. J. Adapt Control Signal Process. 32(7), 1067–1080 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tan, K.-H., Anthony Lewis, M.: Virtual structures for high-precision cooperative mobile robotic control. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS'96, vol. 1, pp. 132–139. IEEE, Osaka (1996)

  41. Lewis, M.A., Tan, K.-H.: High precision formation control of mobile robots using virtual structures. Auton. Robot. 4(4), 387–403 (1997)

    Article  Google Scholar 

  42. Yoo, S., Park, J.B., Choi, Y.: Adaptive formation tracking control of electrically driven multiple mobile robots. IET Control Theory Appl. 4(8), 1489–1500 (2010)

    Article  Google Scholar 

  43. Yuan, J., Tang, G.-Y.: Formation control for mobile multiple robots based on hierarchical virtual structures, pp. 393–398. IEEE ICCA 2010, IEEE, Xiamen (2010)

  44. Rezaee, H., Abdollahi, F.: A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Trans. Ind. Electron. 61(1), 347–354 (2013)

    Article  Google Scholar 

  45. Ren, W., Beard, R.: Decentralized scheme for spacecraft formation flying via the virtual structure approach. J. Guid. Control. Dyn. 27(1), 73–82 (2004)

    Article  Google Scholar 

  46. Xin, M., Balakrishnan, S., Pernicka, H.J.: Position and attitude control of deep-space spacecraft formation flying via virtual structure and θ-D technique. J. Dyn. Syst. Meas. Control. 129(5), 689–698 (2007)

    Article  Google Scholar 

  47. Li, N.H.M., Liu, H.H.T.: Formation UAV flight control using virtual structure and motion synchronization. In: 2008 American Control Conference, pp. 1782–1787. IEEE, Seattle (2008)

  48. Ren, W., Beard, R.: Virtual structure based spacecraft formation control with formation feedback. In: AIAA Guidance, Navigation, and control conference and exhibit, p. 4963 (2002)

  49. Sadowska, A., den Broek, T.., Huijberts, H., van de Wouw, N., Kostić, D., Nijmeijer, H.: A virtual structure approach to formation control of unicycle mobile robots using mutual coupling. Int. J. Control. 84(11), 1886–1902 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yuan, C., Licht, S., He, H.: Formation learning control of multiple autonomous underwater vehicles with heterogeneous nonlinear uncertain dynamics. IEEE Trans. Cybern. 99, 1–15 (2017)

    Google Scholar 

  51. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  52. Xu, D., Zhang, X., Zhu, Z., Chen, C., Yang, P.: Behavior-based formation control of swarm robots. In: mathematical Problems in Engineering, vol. 2014, no. 1, Article ID 205759 (2014)

  53. Monteiro, S. and Bicho, E.. A dynamical systems approach to behavior-based formation control. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292). IEEE (2002)

  54. Jia, Q., Li, G.: Formation control and obstacle avoidance algorithm of multiple autonomous underwater vehicles (AUVs) based on potential function and behavior rules. In: 2007 IEEE international conference on automation and logistics, pp. 569-573. IEEE, Jinan (2007)

  55. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res. 5(1), 90–98 (1986)

  56. Fiorelli, E., Leonard, N.E., Bhatta, P., Paley, D.A., Bachmayer, R., Fratantoni, D.M.: Multi-AUV control and adaptive sampling in Monterey Bay. IEEE J. Ocean. Eng. 31(4), 935–948 (2006)

    Article  Google Scholar 

  57. Barnes, L., Fields, M.A., Valavanis, K.: Unmanned ground vehicle swarm formation control using potential fields. In: 15th Mediterranean Conference on Control & Automation, pp. 1–8. IEEE (2007)

  58. Pereira, A.R., Hsu, L.: Adaptive formation control using artificial potentials for Euler-Lagrange agents. IFAC Proceedings Volumes. 41(2), 10788–10793 (2008)

    Article  Google Scholar 

  59. Gouvea, J.A., Pereira, A.R., Hsu, L., Lizarralde, F.: Adaptive formation control of dynamic nonholonomic systems using potential functions. In: Proceedings of the 2010 American Control Conference. pp. 230–235. IEEE, Baltimore (2010)

  60. Ihle, I.-A.F., Skjetne, R., Fossen, T.I.: Nonlinear formation control of marine craft with experimental results. In: 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No. 04CH37601), vol. 1, pp. 680–685. IEEE, Nassau (2004)

  61. Cui, R., Demin, X., Yan, W.: Formation control of autonomous underwater vehicles under fixed topology. In: 2007 IEEE International Conference on Control and Automation, pp. 2913–2918. IEEE, Guangzhou (2007)

  62. Shojaei, K.: Neural network formation control of underactuated autonomous underwater vehicles with saturating actuators. Neurocomputing. 194, 372–384 (2016)

    Article  Google Scholar 

  63. Viegas, D., Batista, P., Oliveira, P., Silvestre, C.: Decentralized linear motion estimators for AUV formations with fixed topologies. IFAC Proceedings Volumes. 44(1), 13636–13641 (2011)

    Article  Google Scholar 

  64. Viegas, D., Batista, P., Oliveira, P., Silvestre, C.: Decentralized linear state observers for vehicle formations with time-varying topologies. In: 2013 American Control Conference, pp. 65–70. IEEE, Washington, DC (2013)

  65. Pang, S.-K., Li, Y.-H., Yi, H.: Joint formation control with obstacle avoidance of Towfish and multiple autonomous underwater vehicles based on graph theory and the null-space-based method. Sensors. 19(11), 2591 (2019)

    Article  Google Scholar 

  66. Liu, H., Lyu, Y., Lewis, F.L., Wan, Y.: Robust time-varying formation control for multiple underwater vehicles subject to nonlinearities and uncertainties. Int. J. Robust Nonlinear Control. 29(9), 2712–2724 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  67. Cheah, C.C., Hou, S.P., Slotine, J.J.E.: Region-based shape control for a swarm of robots. Automatica. 45(10), 2406–2411 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. Hou, S.P., Cheah, C.C.: Can a simple control scheme work for a formation control of multiple autonomous underwater vehicles? IEEE Trans. Control Syst. Technol. 19(5), 1090–1101 (2010)

    Article  Google Scholar 

  69. Xiang, X., Jouvencel, B., Parodi, O.: Coordinated formation control of multiple autonomous underwater vehicles for pipeline inspection. Int. J. Adv. Robot. Syst. 7(1), 3 (2010)

    Article  Google Scholar 

  70. Qi, X.: Adaptive coordinated tracking control of multiple autonomous underwater vehicles. Ocean Eng. 91, 84–90 (2014)

    Article  Google Scholar 

  71. Yang, H., Wang, C., Zhang, F.: Robust geometric formation control of multiple autonomous underwater vehicles with time delays. In: 2013 American Control Conference, pp. 1380–1385. IEEE, Washington, DC (2013)

  72. Yan, Z., Wu, Y., du, X., Li, J.: Limited communication consensus control of leader-following multi-UUVs in a swarm system under multi-independent switching topologies and time delay. IEEE Access. 6, 33183–33200 (2018)

    Article  Google Scholar 

  73. Yang, T., Yu, S., Yan, Y.: Formation control of multiple underwater vehicles subject to communication faults and uncertainties. Appl. Ocean Res. 82, 109–116 (2019)

    Article  Google Scholar 

  74. Guerrero, J., Torres, J., Creuze, V., Chemori, A.: Observation-based nonlinear proportional–derivative control for robust trajectory tracking for autonomous underwater vehicles. IEEE J Ocean Eng. 45(4), 1190–1202 (2019)

  75. Galeani, S., Tarbouriech, S., Turner, M., Zaccarian, L.: A tutorial on modern anti-windup design. Eur. J. Control. 15(3–4), 418–440 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  76. Miyamaoto, S., Aoki, T., Maeda, T., Hirokawa, K., Ichikawa, T., Saitou, T., Kobayashi, H., Kobayashi, E., Iwasaki, S.: Maneuvering control system design for autonomous underwater vehicle. In: MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295), vol. 1, pp. 482–489. IEEE (2001)

  77. Cui, R., Zhang, X., Cui, D.: Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities. Ocean Eng. 123, 45–54 (2016)

    Article  Google Scholar 

  78. Sarhadi, P., Noei, A.R., Khosravi, A.: Adaptive integral feedback controller for pitch and yaw channels of an AUV with actuator saturations. ISA Trans. 65, 284–295 (2016)

    Article  Google Scholar 

  79. Sarhadi, P., Noei, A.R., Khosravi, A.: Model reference adaptive autopilot with anti-windup compensator for an autonomous underwater vehicle: design and hardware in the loop implementation results. Appl. Ocean Res. 62, 27–36 (2017)

    Article  Google Scholar 

  80. Kim, M., Joe, H., Pyo, J., Kim, J., Kim, H., Son-cheol, Y.: Variable structure PID controller with anti-windup for autonomous underwater vehicle. In: 2013 OCEANS-San Diego, pp. 1–5. IEEE (2013)

  81. Sarhadi, P., Noei, A.R., Khosravi, A.: Model reference adaptive PID control with anti-windup compensator for an autonomous underwater vehicle. Robot. Auton. Syst. 83, 87–93 (2016)

    Article  Google Scholar 

  82. Guerrero, J., Torres, J., Creuze, V., Chemori, A., Campos, E.: Saturation based nonlinear PID control for underwater vehicles: design, stability analysis and experiments. Mechatronics. 61, 96–105 (2019)

    Article  Google Scholar 

  83. Edwards, D.B., Bean, T.A., Odell, D.L., Anderson, M.J.: A leader-follower algorithm for multiple AUV formations. In: 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No. 04CH37578), pp. 40–46. IEEE, Sebasco (2004)

  84. Longhi, S., Monteriu, A., Vaccarini, M.: Cooperative control of underwater glider fleets by fault tolerant decentralized MPC. IFAC Proceedings Volumes. 41(2), 16021–16026 (2008)

    Article  Google Scholar 

  85. Huang, W., Fang, H., Li, L.: Obstacle avoiding policy of multi-AUV formation based on virtual AUV. In: 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, vol. 4, pp. 131–135. IEEE, Tianjin (2009)

  86. Li, X., Zhu, D.: An adaptive SOM neural network method for distributed formation control of a group of AUVs. IEEE Trans. Ind. Electron. 65(10), 8260–8270 (2018)

    Google Scholar 

  87. Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 7(3), 278–288 (1991)

    Article  Google Scholar 

  88. Wang, H., Wang, L., Li, J., Pan, L.: A vector polar histogram method based obstacle avoidance planning for AUV. In: 2013 MTS/IEEE OCEANS-Bergen, pp. 1-5. IEEE, Bergen (2013)

  89. Gaya, J.O., Gonçalves, L.T., Duarte, A.C., Zanchetta, B., Drews, P., Botelho, S.S.C.: Vision-based obstacle avoidance using deep learning. In: 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR), pp. 7–12. IEEE, Recife (2016)

  90. Lin, Y.-H., Shou, K.-P., Huang, L.-J.: The initial study of LLS-based binocular stereo-vision system on underwater 3D image reconstruction in the laboratory. J. Mar. Sci. Technol. 22(3), 513–532 (2017)

    Article  Google Scholar 

  91. Xiao, L., Bingjie, G., Lei, W.: Motion control of mini underwater robots based on sigmoid fuzzy neural network. In: 2007 IEEE International Conference on Automation and Logistics, pp. 918–922. IEEE, Jinan (2007)

  92. Mukherjee, K., Kar, I.N., Bhatt, R.K.P.: Region reaching and obstacle avoidance for autonomous underwater vehicle without velocity measurement. IFAC Proceedings. 47(1), 754–757 (2014)

  93. Wang, Y., et al.: A practical leader–follower tracking control scheme for multiple Nonholonomic Mobile robots in unknown obstacle environments. IEEE Trans. Control Syst. Technol. 27(4), 1685–1693 (2018)

    Article  Google Scholar 

  94. Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Magazine. 9(2), 61–74 (1988)

  95. Sezer, V., Gokasan, M.: A novel obstacle avoidance algorithm:“follow the gap method”. Robot. Auton. Syst. 60(9), 1123–1134 (2012)

    Article  Google Scholar 

  96. Aghababa, M.P.: 3D path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstacles. Appl. Ocean Res. 38, 48–62 (2012)

    Article  Google Scholar 

  97. Hernández, J.D., Vidal, E., Moll, M., Palomeras, N., Carreras, M., Kavraki, L.E.: Online motion planning for unexplored underwater environments using autonomous underwater vehicles. J. Field Rob. 36(2), 370–396 (2019)

    Article  Google Scholar 

  98. Liu, Y., Bucknall, R.: A survey of formation control and motion planning of multiple unmanned vehicles. Robotica. 36(7), 1019–1047 (2018)

    Article  Google Scholar 

  99. Cao, X., Zhu, D.: Multi-AUV underwater cooperative search algorithm based on biological inspired neurodynamics model and velocity synthesis. J. Navig. 68(6), 1075–1087 (2015)

    Article  Google Scholar 

  100. Cao, X., Sun, H., Jan, G.E.: Multi-AUV cooperative target search and tracking in unknown underwater environment. Ocean Eng. 150, 1–11 (2018)

    Article  Google Scholar 

  101. Yang, Y., Wang, S., Wu, Z., Wang, Y.: Motion planning for multi-HUG formation in an environment with obstacles. Ocean Eng. 38(17–18), 2262–2269 (2011)

    Article  Google Scholar 

  102. Häusler, A.J., Saccon, A., Aguiar, A.P., Hauser, J., Pascoal, A.M.: Cooperative motion planning for multiple autonomous marine vehicles. IFAC Proceedings Volumes. 45(27), 244–249 (2012)

    Article  Google Scholar 

  103. Lolla, T., Haley Jr., P., Lermusiaux, P.: Path planning in multi-scale ocean flows: coordination and dynamic obstacles. Ocean Model. 94, 46–66 (2015)

    Article  Google Scholar 

  104. Xiong, C., Chen, D., Lu, D., Zeng, Z., Lian, L.: Path planning of multiple autonomous marine vehicles for adaptive sampling using Voronoi-based ant colony optimization. Robot. Auton. Syst. 115, 90–103 (2019)

    Article  Google Scholar 

  105. Cai, W., Zhang, M., Zheng, Y.: Task assignment and path planning for multiple autonomous underwater vehicles using 3D dubins curves. Sensors. 17(7), 1607 (2017)

    Article  Google Scholar 

  106. Panda, M., Das, B., Pati, B.B.: Global path planning for multiple AUVs using GWO. Archives of Control Sciences. 30, 77–100 (2020)

  107. Freeman, J.A., Skapura, D.M.: Algorithms, applications, and programming techniques. In: Neural networks. Addison-Wesley Publ. Co (1991)

  108. Zhu, D., Huang, H., Yang, S.X.: Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace. IEEE Trans. Cybern. 43(2), 504–514 (2013)

    Article  Google Scholar 

  109. Cao, X., Zhu, D., Yang, S.X.: Multi-AUV target search based on bioinspired neurodynamics model in 3-D underwater environments. IEEE Trans. Neural. Netw. Learn. Syst. 27(11), 2364–2374 (2015)

    Article  MathSciNet  Google Scholar 

  110. Chen, Y.-L., Ma, X.-W., Bai, G.-Q., Sha, Y., Liu, J.: Multi-autonomous underwater vehicle formation control and cluster search using a fusion control strategy at complex underwater environment. Ocean Eng. 216, 108048 (2020)

  111. Shanmugavel, M., Tsourdos, A., White, B., Żbikowski, R.: Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs. Control. Eng. Pract. 18(9), 1084–1092 (2010)

    Article  Google Scholar 

  112. Ma, X., et al.: 3-d decentralized prioritized motion planning and coordination for high-density operations of micro aerial vehicles. IEEE Trans. Control Syst. Technol. 26(3), 939–953 (2017)

    Article  Google Scholar 

  113. Ngo, V.T., Nguyen, A.D., Ha, Q.P.: Integration of planning and control in robotic formations. In: Proceedings of the Australasian Conference on Robotics and Automation, pp. 1–8 (2005)

  114. Liu, S., Sun, D., Zhu, C.: A dynamic priority based path planning for cooperation of multiple mobile robots in formation forming. Robot. Comput. Integr. Manuf. 30(6), 589–596 (2014)

    Article  Google Scholar 

  115. Liu, Y., Bucknall, R.: Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment. Ocean Eng. 97, 126–144 (2015)

    Article  Google Scholar 

  116. Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., Lane, D.: Path planning for autonomous underwater vehicles. IEEE Trans. Robot. 23(2), 331–341 (2007)

    Article  Google Scholar 

  117. Tan, C.S., Sutton, R., Chudley, J.: An incremental stochastic motion planning technique for autonomous underwater vehicles. IFAC Proceedings Volumes. 37(10), 483–488 (2004)

    Article  Google Scholar 

  118. Vidal, E., Moll, M., Palomeras, N., Hernández, J.D., Carreras, M., Kavraki, L.E.: Online multilayered motion planning with dynamic constraints for autonomous underwater vehicles. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8936–8942. IEEE, Montreal (2019)

  119. Panda, M., Das, B., Pati, B.B.: Grey wolf optimization for global path planning of autonomous underwater vehicle. In: Proceedings of the Third International Conference on Advanced Informatics for Computing Research, pp. 1–6 (2019)

  120. Zeng, Z., Sammut, K., Lian, L., He, F., Lammas, A., Tang, Y.: A comparison of optimization techniques for AUV path planning in environments with ocean currents. Robot. Auton. Syst. 82, 61–72 (2016)

    Article  Google Scholar 

  121. Sugihara, K. and Yuh, J.. GA-based motion planning for underwater robotic vehicles. In International Symposium on Unmanned Untethered Submersible Technology. UNIVERSITY OF NEW HAMPSHIRE-MARINE SYSTEMS (1997)

  122. Zadeh, S.M., et al.: A novel versatile architecture for autonomous underwater vehicle’s motion planning and task assignment. Soft. Comput. 22(5), 1687–1710 (2018)

    Article  Google Scholar 

  123. Sun, Y.: et al. Mapless motion planning system for an autonomous underwater vehicle using policy gradient-based deep reinforcement learning. 96(3–4), 591–601 (2019)

    Google Scholar 

  124. Liu, B., Zhanming, L.: Auv path planning under ocean current based on reinforcement learning in electronic chart. In: 2013 International Conference on Computational and Information Sciences, pp. 1939–1942. IEEE, Shiyang (2013)

  125. Yu, R., Shi, Z., Huang, C., Li, T., Ma, Q.: Deep reinforcement learning based optimal trajectory tracking control of autonomous underwater vehicle. In: 2017 36th Chinese control conference (CCC), pp. 4958–4965. IEEE, Dalian (2017)

  126. Wang, Z., Zhang, S., Feng, X., Sui, Y.: Autonomous underwater vehicle path planning based on actor-multi-critic reinforcement learning. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. (2020). https://doi.org/10.1177/0959651820937085

  127. Kim, J.O., Khosla, P.K.: Real-time obstacle avoidance using harmonic potential functions. IEEE Trans Robot Autom. 8(3), 338–349 (1992)

  128. Daily, R., Bevly, D.M.: Harmonic potential field path planning for high speed vehicles. In 2008 American Control Conference, pp. 4609–4614. IEEE, Seattle (2008)

  129. Huang, Z., Daqi, Z.: A cooperative hunting algorithm of multi-AUV in 3-D dynamic environment. In The 27th Chinese Control and Decision Conference (2015 CCDC), pp. 2571–2575. IEEE, Qingdao (2015)

  130. Zhu, D., Lv, R., Cao, X., Yang, S.X.: Multi-AUV hunting algorithm based on bio-inspired neural network in unknown environments. Int. J. Adv. Robot. Syst. 12(11), 166 (2015)

    Article  Google Scholar 

  131. Ge, S.S., Cui, Y.J.: New potential functions for mobile robot path planning. IEEE Trans. Robot. Autom. 16(5), 615–620 (2000)

    Article  Google Scholar 

Download references

Availability of Data and Materials

Source code in Matlab generated during the current study is available from the corresponding author on reasonable request.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

B.H., A.K., and P.S. contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Alireza Khosravi.

Ethics declarations

Ethical Approval

‘Not applicable’

Consent to Participate

‘Not applicable’.

Consent to Publish

‘Not applicable’.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadi, B., Khosravi, A. & Sarhadi, P. A Review of the Path Planning and Formation Control for Multiple Autonomous Underwater Vehicles. J Intell Robot Syst 101, 67 (2021). https://doi.org/10.1007/s10846-021-01330-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01330-4

Keywords

Navigation