Skip to main content

Advertisement

SpringerLink
Analysis of Methods for Incremental Policy Refinement by Kinesthetic Guidance
Download PDF
Download PDF

Associated Content

Part of a collection:

Topical collection on ICAR 2019 Special Issue

  • Regular Paper
  • Open Access
  • Published: 15 April 2021

Analysis of Methods for Incremental Policy Refinement by Kinesthetic Guidance

  • Mihael Simonič  ORCID: orcid.org/0000-0002-0346-70821,
  • Tadej Petrič  ORCID: orcid.org/0000-0002-3407-42061,
  • Aleš Ude  ORCID: orcid.org/0000-0003-3677-39721 &
  • …
  • Bojan Nemec  ORCID: orcid.org/0000-0002-8728-77311 

Journal of Intelligent & Robotic Systems volume 102, Article number: 5 (2021) Cite this article

  • 401 Accesses

  • 6 Citations

  • 3 Altmetric

  • Metrics details

Abstract

Traditional robot programming is often not feasible in small-batch production, as it is time-consuming, inefficient, and expensive. To shorten the time necessary to deploy robot tasks, we need appropriate tools to enable efficient reuse of existing robot control policies. Incremental Learning from Demonstration (iLfD) and reversible Dynamic Movement Primitives (DMP) provide a framework for efficient policy demonstration and adaptation. In this paper, we extend our previously proposed framework with improvements that provide better performance and lower the algorithm’s computational burden. Further, we analyse the learning stability and evaluate the proposed framework with a comprehensive user study. The proposed methods have been evaluated on two popular collaborative robots, Franka Emika Panda and Universal Robot UR10.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

Materials Availability

The data that support the findings of this study are available from the corresponding author, B.N., upon reasonable request.

References

  1. Molina, E., Lazaro, O., Sepulcre, M., Gozalvez, J., Passarella, A., Raptis, T.P., Ude, A., Nemec, B., Rooker, M., Kirstein, F., Mooij, E.: The AUTOWARE framework and requirements for the cognitive digital automation. In: Camarinha-Matos, L, Afsarmanesh, H, Fornasiero, R (eds.) IFIP Advances in Information and Communication Technology: Volume 506. Springer International Publishing, Cham (2017)

  2. Gašpar, T., Deniša, M., Radanovič, P., Ridge, B., Savarimuthu, T.R., Kramberger, A., Priggemeyer, M., Rossmann, J., Wörgötter, F., Ivanovska, T., Parizi, S., Gosar, Z., Kovač, I., Ude, A.: Smart hardware integration with advanced robot programming technologies for efficient reconfiguration of robot workcells. Robot. Comput. Integr. Manuf. 66, 101979 (2020)

    Article  Google Scholar 

  3. Dean-Leon, E., Ramirez-Amaro, K., Bergner, F., Dianov, I., Lanillos, P., Cheng, G.: Robotic technologies for fast deployment of industrial robot systems. IECON Proceedings (Industrial Electronics Conference), pp. 6900–6907 (2016)

  4. Dillmann, R.: Teaching and learning of robot tasks via observation of human performance. Robot. Auton. Syst. 47(2-3), 109–116 (2004)

    Article  Google Scholar 

  5. Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot Programming by Demonstration. In: Siciliano, B, Khatib, O (eds.) Springer handbook of robotics, pp. 1371–1394. Springer, Berlin, Heidelberg (2008)

  6. Argall, B., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  7. Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.: Skill learning and task outcome prediction for manipulation. IEEE International Conference on Robotics and Automation (ICRA), pp. 3828–3834 (2011)

  8. Peters, J., Mülling, K, Kober, J.: Towards motor skill learning for robotics. In: Pradalier, C, Siegwart, R, Hirzinger, G (eds.) Robotics research, pp. 469–482. Springer Verlag, Berlin, Heidelberg (2011)

  9. Bristow, D.A., Tharayil, M., Alleyne, A.G.: A Survey of Iterative Learning Control - A learning-based method for high-performance tracking control. IEEE control systems magazine 26(3), 96–114 (2006)

    Article  Google Scholar 

  10. Calinon, S., Billard, A.: Incremental learning of gestures by imitation in a humanoid robot. In: 2nd ACM/IEEE International conference on human-robot interaction (HRI), pp. 255–262 (2007)

  11. Kulic, D., Takano, W., Nakamura, Y.: Combining automated on-line segmentation and incremental clustering for whole body motions. In: IEEE International conference on robotics and automation (ICRA), pp. 2591–2598. Pasadena, CA (2008)

  12. Gams, A., Petrič, T., Do, M., Nemec, B., Morimoto, J., Asfour, T., Ude, A.: Adaptation and coaching of periodic motion primitives through physical and visual interaction. Robot. Auton. Syst. 75, 340–351 (2016)

    Article  Google Scholar 

  13. Lee, D., Ott, C.: Incremental motion primitive learning by physical coaching using impedance control. In: IEEE/RSJ International conference on intelligent robots and systems (IROS), pp. 4133–4140, Taipei, Taiwan (2010)

  14. Ewerton, M., Maeda, G., Kollegger, G., Wiemeyer, J., Peters, J.: Incremental imitation learning of context-dependent motor skills. In: IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 351–358. Cancun, Mexico (2016)

  15. Pardowitz, M., Knoop, S., Dillmann, R., Zollner, R.D.: Incremental Learning of Tasks From User Demonstrations, Past Experiences, and Vocal Comments. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 37(2), 322–332 (2007)

    Article  Google Scholar 

  16. Tykal, M., Montebelli, A., Kyrki, V.: Incrementally assisted kinesthetic teaching for programming by demonstration. In: 11th ACM/IEEE International conference on human-robot interaction (HRI), pp. 205–212 (2016)

  17. žlajpah, L., Petrič, T.: Unified Virtual Guides Framework for Path Tracking Tasks. Robotica 38(10), 1807–1823 (2020)

    Article  Google Scholar 

  18. Papageorgiou, D., Kastritsi, T., Doulgeri, Z.: A passive robot controller aiding human coaching for kinematic behavior modifications. Robot. Comput. Integr. Manuf. 61, 101824 (2020)

    Article  Google Scholar 

  19. Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47(6), 381–391 (1954)

    Article  Google Scholar 

  20. Nemec, B., Likar, N., Gams, A., Ude, A.: Human robot cooperation with compliance adaptation along the motion trajectory. Auton. Robot. 42(5), 1023–1035 (2018)

    Article  Google Scholar 

  21. Nemec, B., žlajpah, L., Šlajpah, S., Piškur, J., Ude, A.: An efficient PbD framework for fast deployment of bi-manual assembly tasks. In: IEEE-RAS International conference on humanoid robots (Humanoids), pp. 166–173. Beijing, China (2018)

  22. Nemec, B., Simonič, M., Petrič, T., Ude, A.: Incremental policy refinement by recursive regression and kinesthetic guidance. In: 19th International conference on advanced robotics (ICAR), pp. 344–349. Belo Horizonte, Brazil (2019)

  23. Gašpar, T., Nemec, B., Morimoto, J., Ude, A.: Skill learning and action recognition by arc-length dynamic movement primitives. Robot. Auton. Syst. 100, 225–235 (2018)

    Article  Google Scholar 

  24. Abu-Dakka, F.J., Nemec, B., Jorgensen, J.A., Savarimuthu, T.R., Krüger, N., Ude, A.: Adaptation of Manipulation Skills in Physical Contact with the Environment to Reference Force Profiles. Auton. Robot. 39(2), 199–217 (2015)

    Article  Google Scholar 

  25. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Comput. 25(2), 328–73 (2013)

    Article  MathSciNet  Google Scholar 

  26. Vuga, R., Nemec, B., Ude, A.: Speed adaptation for self-improvement of skills learned from user demonstrations. Robotica 34(12), 2806–2822 (2016)

    Article  Google Scholar 

  27. Ude, A., Nemec, B., Petrič, T., Morimoto, J.: Orientation in Cartesian space dynamic movement primitives. In: IEEE International conference on robotics and automation (ICRA), pp. 2997–3004. Hong Kong, China (2014)

  28. Koutras, L., Doulgeri, Z.: A correct formulation for the orientation dynamic movement primitives for robot control in the cartesian space. In: Proc. conference on robot learning (CoRL), pp. 293–302. Osaka, Japan (2019)

  29. Iturrate, I., Sloth, C., Kramberger, A., Petersen, H.G., Østergaard, E.H., Savarimuthu, T.R.: Towards reversible dynamic movement primitives. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5063–5070. Macau, China (2019)

  30. Ravani, R., Meghdari, A.: Velocity distribution profile for robot arm motion using rational Frenet-Serret curves. Informatica 17(1), 69–84 (2006)

    Article  MathSciNet  Google Scholar 

  31. Khatib, O.: Augmented object and reduced effective inertia in robot systems. In: American control conference, pp. 2140–2147. Atlanta, GA (1988)

  32. Nemec, B., Petrič, T., Ude, A.: Force adaptation with recursive regression Iterative Learning Controller. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 2835–2841. Hamburg, Germany (2015)

  33. Khatib, O.: A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE J. Robot. Autom. 3, 43–53 (1987)

    Article  Google Scholar 

  34. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: IEEE/RSJ International conference on intelligent robots and systems (IROS), pp. 573–580 (2012)

Download references

Funding

The research leading to these results has received funding from the Horizon 2020 RIA Programme grant 820767 CoLLaboratE and from the program group P2-0076 Automation, robotics, and biocybernetics funded by the Slovenian Research Agency.

Author information

Authors and Affiliations

  1. Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia

    Mihael Simonič, Tadej Petrič, Aleš Ude & Bojan Nemec

Authors
  1. Mihael Simonič
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Tadej Petrič
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Aleš Ude
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Bojan Nemec
    View author publications

    You can also search for this author in PubMed Google Scholar

Contributions

Conceptualization, B.N. and M.S.; methodology, B.N., M.S., A.U. and T.P.; software, M.S. and B.N.; formal analysis, B.N., M.S., A.U. and T.P.; investigation, M.S.; data curation, M.S. and T.P.; writing–original draft preparation, B.N.; writing–review and editing, M.S., B.N. and A.U.; visualization, M.S. and B.N.; supervision, B.N. and A.U.; funding acquisition, B.N. and A.U. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mihael Simonič.

Ethics declarations

Competing interests

The authors have no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 17.3 MB)

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simonič, M., Petrič, T., Ude, A. et al. Analysis of Methods for Incremental Policy Refinement by Kinesthetic Guidance. J Intell Robot Syst 102, 5 (2021). https://doi.org/10.1007/s10846-021-01328-y

Download citation

  • Received: 30 June 2020

  • Accepted: 25 January 2021

  • Published: 15 April 2021

  • DOI: https://doi.org/10.1007/s10846-021-01328-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Incremental learning
  • Coaching
  • Stability analysis
  • User study
Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

Topical collection on ICAR 2019 Special Issue

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.