Flight phase adaptive aero-servo-elastic aircraft design methods. cordis.europa.eu/project/id/815058
Flutter Free Flight Envelope Expansion for Economical Performance Improvement (2015). https://flexop.eu/
Adam, E., Guestrin, E.: Identification and robust control of an experimental servo motor. ISA Transactions 41 (2), 225–234 (2002). https://doi.org/10.1016/S0019-0578(07)60082-2. http://www.sciencedirect.com/science/article/pii/S0019057807600822
Article
Google Scholar
Anastasopoulos, L., Hornung, M.: Design of a real-time test bench for UAV servo actuators. AIAA AVIATION Forum. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2018-3735(2018)
Batista, J., Sousa, K., Nunes, J.L., Sousa, R.S., Thé, G.A.P.: Identification of the parameters of a ac servomotor using genetic algorithm. https://doi.org/10.5281/zenodo.1100140 (2015)
Davies, H, Kirk, F.: A resume of aerodynamic data on airbrakes. Tech. Rep., Aeronautical Research Council, Ministry of Supply (1951)
Grote, K.H., Feldhusen, J.: Dubbel: Taschenbuch Für Den Maschinenbau, Auflage, vol. 22. Springer, Berlin (2007)
Book
Google Scholar
Ishak, N., Abdullah, N.I., Rahiman, M.H.F., Samad, A.M., Adnan, R.: Model identification and controller design for servomotor. In: 2010 6th International Colloquium on Signal Processing and its Applications. https://doi.org/10.1109/CSPA.2010.5545294, pp 1–4 (2010)
Koerner, D.: Experimental System Identification of an Electric Actuated Airbrake System for the FLEXOP Research UAV. Bachelor Thesis, Institute of Aircraft Design Technical University of Munich (2018)
KST: X30-12-1500 Technical Specification (2018)
Ljung, L.: System Identification: Theory for the User. Prentice Hall information and system sciences series. Prentice Hall PTR. https://books.google.hu/books?id=nHFoQgAACAAJ (1999)
Ortiz, X., Rival, D.E., Wood, D.W.: Forces and moments on flat plates of small aspect ratio with application to PV wind loads and small wind turbine blades. Energies 8(4), 1–16 (2015)
Article
Google Scholar
Piatek, M.: Identification of the servo motor used in the walking robot. AUTOMATYKA 14(1) (2010)
Pusch, M., Ossmann, D., Luspay, T.: Structured control design for a highly flexible flutter demonstrator. Aerospace 6(3). https://doi.org/10.3390/aerospace6030027. https://www.mdpi.com/2226-4310/6/3/27 (2019)
Sendner, F.M., Stahl, P., Roessler, C., Hornung, M.: Designing an uav propulsion system for dedicated acceleration and deceleration requirements. AIAA AVIATION Forum. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2017-4105 (2017)
Sendner, F.M., Stahl, P., Roessler, C., Hornung, M.: Design and testing of an electric actuated airbrake for dynamic airspeed control of an unmanned aeroelastic research vehicle. AIAA AVIATION Forum. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2018-3194 (2018)
Takarics, B., Patartics, B., Luspay, T., Vanek, B., Roessler, C., Bartasevicius, J., Koeberle, S.J., Hornung, M., Teubl, D., Pusch, M., Wustenhagen, M., Kier, T.M., Looye, G., Bauer, P., Meddaikar, Y.M., Waitman, S., Marcos, A.: Active flutter mitigation testing on the FLEXOP demonstrator aircraft. In: AIAA Scitech 2020 Forum. https://doi.org/10.2514/6.2020-1970. https://arc.aiaa.org/doi/abs/10.2514/6.2020-1970(2020)
Wada, T., Ishikawa, M., Kitayoshi, R., Maruta, I., Sugie, T.: Practical modeling and system identification of R/C servo motors. In: 2009 IEEE Control Applications, (CCA) Intelligent Control, (ISIC). https://doi.org/10.1109/CCA.2009.5280987, pp 1378–1383 (2009)