Skip to main content

Advertisement

Log in

A Socially Aware SLAM Technique Augmented by Person Tracking Module

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In recent years the development of Simultaneous Localization and Mapping (SLAM) techniques have enabled social robots to autonomously navigate in routine human workplaces. However, most common SLAM techniques are developed for mapping and localization in static worlds. In this paper, we have developed and analyzed a novel augmentation of the FastSLAM algorithm, including a person tracking module using 2D LiDAR sensor data. Utilizing this module, the SLAM algorithm is capable of filtering measurements coming from walking people who produce noises due to their intrinsic dynamic and unstableness. This augmentation was developed and then tested on our socially assistive mobile robot platform, Arash, while moving in populated environments utilizing Robotic Operating System (ROS) as a middleware. This new approach demonstrated a clearer representation of the mapped environment and therefore more accurate localization and navigation compared to its static SLAM predecessor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  2. Robins, B., Dautenhahn, K., Te Boekhorst, R., Billard, A.: Robotic assistants in therapy and education of children with autism: can a small humanoid robot help encourage social interaction skills? Univers. Access Inf. 4(2), 105–120 (2005)

    Article  Google Scholar 

  3. Taheri, A., Meghdari, A., Alemi, M., Pouretemad, H.: Teaching music to children with autism: a social robotics challenge. Scientia Iranica. 26(1), 40–58 (2019)

    Google Scholar 

  4. Meghdari, A., Alemi, M., Zakipour, M., Kashanian, S.A.: Design and realization of a sign language educational humanoid robot. J. Intellig. Robot. Syst. 1–15 (2018)

  5. Meghdari, A., et al.: Arash: a social robot buddy to support children with cancer in a hospital environment. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 232(6), 605–618 (2018)

    Article  Google Scholar 

  6. Meghdari, A., Shariati, A., Alemi, M., Nobaveh, A.A., Khamooshi, M., Mozaffari, B.: Design Performance Characteristics of a Social Robot Companion ‘ Arash ’ for Pediatric Hospitals. Int. J. Humanoid Robot. 15(05), 1850019 (2018)

    Article  Google Scholar 

  7. A. Meghdari, M. Alemi, M. Khamooshi, A. Amoozandeh, A. Shariati, and B. Mozafari, “Conceptual design of a social robot for pediatric hospitals,” in 4th RSI International Conference on Robotics and Mechatronics, ICRoM 2016, 2017, pp. 566–571

  8. M. Alemi, A. Meghdari, and A. Ghanbarzadeh, “Impact of a Social Humanoid Robot as a Therapy Assistant in Children Cancer Treatment,” pp. 11–22

  9. Alemi, M., Ghanbarzadeh, A., Meghdari, A., Moghadam, L.J.: Clinical application of a humanoid robot in pediatric Cancer interventions. Int. J. Soc. Robot. 8(5), 743–759 (2016)

    Article  Google Scholar 

  10. Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling. Proc. - IEEE Int. Conf. Robot. Autom. 2005, 2432–2437 (2005)

    Google Scholar 

  11. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)

    Article  Google Scholar 

  12. A. Leigh, J. Pineau, N. Olmedo, and H. Zhang, “Person tracking and following with 2D laser scanners,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 726–733

  13. Betke, M., Gurvits, L.: Mobile robot localization using landmarks. IEEE Trans. Robot. Autom. 13(2), 251–263 (1997)

    Article  Google Scholar 

  14. Leonard, J.J., Durrant-Whyte, H.F.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Robot. Autom. 7(3), 376–382 (Jun. 1991)

    Article  Google Scholar 

  15. S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping,” no. April, pp. 321–328, 2002

  16. C. Stachniss, J. J. Leonard, and S. Thrun, “Simultaneous Localization and Mapping,” in Springer Handbook oƒ Robotics, B. Siciliano and O. Khatib, Eds. Springer, 2016, pp. 1153–1175

  17. Csorba, M., Clark, S., Newman, P., Durrant-Whyte, H.F., Dissanayake, M.W.M.G.: A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. Autom. 17(3), 229–241 (Jun. 2002)

    Google Scholar 

  18. G. Dissanayake, H. Durrant-Whyte, and T. Bailey, “A computationally efficient solution to the simultaneous localisation and map building (SLAM) problem,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2000, vol. 2, pp. 1009–1014 vol.2

  19. Murphy, K., Russell, S.: Rao-Blackwellised particle filtering for dynamic Bayesian networks. In: Sequential Monte Carlo Methods in Practice, pp. 499–515. Springer New York, New York, NY (2001)

    Chapter  Google Scholar 

  20. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. Proc. 8th Natl. Conf. Artif. Intell. Conf. Innov. Appl. Artif. Intell. 68(2), 593–598 (2002)

    Google Scholar 

  21. Thrun, S., Montemerlo, M.: The GraphSLAM algorithm with applications to large-scale mapping of urban structures. Robot. Res. Int. J. 25(5–6), 403–429 (2006)

    Article  Google Scholar 

  22. Grisetti, G., Kummerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Intell. Transp. Syst. Mag. 2(4), 31–43 (2010)

    Article  Google Scholar 

  23. Mur-Artal, R., Montiel, J.M.M., Tarods, J.D.: ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 31(5), 1147–1163 (Oct. 2015)

    Article  Google Scholar 

  24. A. Cosgun, D. A. Florencio, and H. I. Christensen, “Autonomous person following for telepresence robots,” in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 4335–4342

  25. Kairy, D., Rushton, P.W., Archambault, P., Pituch, E., Torkia, C., el Fathi, A., Stone, P., Routhier, F., Forget, R., Demers, L., Pineau, J., Gourdeau, R.: Exploring powered wheelchair users and their caregivers’ perspectives on potential intelligent power wheelchair use: a qualitative study. Int. J. Environ. Res. Public Health. 11(2), 2244–2261 (2014)

    Article  Google Scholar 

  26. A. Fod, A. Howard, and M. A. J. Mataric, “A laser-based people tracker,” in ieeexplore.ieee.org , 2003, pp. 3024–3029

  27. Schulz, D., Burgard, W., Fox, D., Cremers, A.B.: People tracking with Mobile robots using sample-based joint probabilistic data association filters. Int. J. Robot. Res. 22(2), 99–116 (Feb. 2003)

    Article  Google Scholar 

  28. K. O. Arras, Ó. M. Mozos, and W. Burgard, “Using boosted features for the detection of people in 2D range data,” in Proceedings - IEEE International Conference on Robotics and Automation, 2007, pp. 3402–3407

  29. Luber, M., Arras, K.O.: Multi-hypothesis social grouping and tracking for mobile robots. In: Robotics: Science and Systems (2013)

    Google Scholar 

  30. Bellotto, N., Hu, H.: Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian filters. Auton. Robots. 28(4), 425–438 (May 2010)

    Article  Google Scholar 

  31. C. Dondrup, N. Bellotto, F. Jovan, and M. Hanheide, “Real-Time Multisensor People Tracking for Human-Robot Spatial Interaction,” 2015

    Google Scholar 

  32. Raid, D.B.: An algorithm for tracking multiple targets. IEEE Trans. Automat. Contr. 24(6), 843–854 (1979)

    Article  Google Scholar 

  33. I. Cox and S. L. Hingorani, “An efficient implementation and evaluation of Reid’s multiple hypothesis tracking algorithm for visual tracking,” in ieeexplore.ieee.org, 2002, pp. 437–442

  34. Blackman, S.S.: Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp. Electron. Syst. Mag. 19(1), 5–18 (Jan. 2004)

    Article  Google Scholar 

  35. Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems (Artech House Radar Library). Artech house (1999)

  36. Hähnel, D., Schulz, D., Burgard, W.: Mobile robot mapping in populated environments. Adv. Robot. 17(7), 579–597 (Jan. 2003)

    Article  Google Scholar 

  37. C. Pantofaru, “ROS leg detector package,” 2010. [Online]. Available: http://wiki.ros.org/leg_detector

Download references

Acknowledgments

This project was supported and funded by the Iranian National Science Foundation-INSF (http://en.insf.org/) and the Office of the Vice-President in Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Meghdari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, E., Meghdari, A. & Alemi, M. A Socially Aware SLAM Technique Augmented by Person Tracking Module. J Intell Robot Syst 99, 3–12 (2020). https://doi.org/10.1007/s10846-019-01120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01120-z

Keywords

Navigation