Skip to main content
Log in

A Vision-Based System for Robot Localization in Large Industrial Environments

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a vision-based system to localize mobile robots in large industrial environments. Our contributions rely on the use of fisheye cameras to have a large field of view and the associated algorithms. We propose several calibration methods and evaluate them with a ground-truth obtained by a motion capture system. In these experiments, we also evaluate the influence of the parameters as the number of points used for calibration, or the influence of the accuracy of these points. Our system is then experimented in a real industrial environment, where we localize an ROV (Remotely Operated underwater Vehicle) in a basin. As shown is this paper, this system can also localize wheeled mobile robots in the same way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barreto, J.: A unifying geometric representation for central projection systems. Comput. Vis. Image. Und. (CVIU) 103(3), 208–217 (2006)

    Article  Google Scholar 

  2. Basu, A., Licardie, S.: Alternative models for fish-eye lenses. Pattern Recogn. Lett. (PRL) 4(16), 433–441 (1995)

    Article  Google Scholar 

  3. Boutteau, R., Savatier, X., Ertaud, J., Mazari, B.: An omnidirectional stereoscopic system for mobile robot navigation. Sensors and Transducers Journal and Transducers Journal, Special Issue on Robotic and Sensors Environments 5, 3–17 (2009)

    Google Scholar 

  4. Boutteau, R., Savatier, X., Ertaud, J., Mazari, B.: Mobile robots navigation, chap. Chapter 1 : a 3D Omnidirectional sensor for mobile robot applications, pp. 1–23. In-Tech. ISBN : 978-953-307-076-6 (2010)

  5. Boutteau, R., Sturm, P., Vasseur, P., Demonceaux, C.: Circular laser/camera-based attitude and altitude estimation: minimal and robust solutions. J. Math. Imaging Vis. (JMIV) 60(3), 382–400 (2018)

    Article  MathSciNet  Google Scholar 

  6. Brauer-Burchardt, C., Voss, K.: A new algorithm to correct fish-eye-and strong wide-angle-lens-distortion from single images. In: Proceedings. International Conference on Image Processing (ICIP), vol. 1, pp 225–228 (2001)

  7. Courbon, J., Mezouar, Y., Eckt, L., Martinet, P.: A generic fisheye camera model for robotic applications. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1683–1688. IEEE (2007)

  8. Courbon, J., Mezouar, Y., Martinet, P.: Evaluation of the unified model of the sphere for fisheye cameras in robotic applications. Adv. Robot. 26(8-9), 947–967 (2012)

    Article  Google Scholar 

  9. Fitzgibbon, A.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp 125–132 (2001)

  10. Geyer, C., Daniilidis, K.: A unifying theory for central panoramic systems and practical implications. In: European Conference on Computer Vision (ECCV), pp 445–461. Springer, Berlin (2000)

  11. Gutmann, J., Burgard, W., Fox, D., Konolige, K.: An experimental comparison of localization methods. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 736–743 (1998)

  12. Hartenberg, R., Denavit, J.: A kinematic notation for lower pair mechanisms based on matrices. J. Appl. Mech. 77(2), 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  13. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  14. Hu, M.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2), 179–187 (1962)

    Article  Google Scholar 

  15. Kalman, R.: A new approach to linear filtering and prediction problems. Transactions of the ASME - Journal of Basic Engineering 82(Series D), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  16. Lepetit, V., Moreno-Noguer, F., Fua, P.: Epnp: An accurate o(n) solution to the pnp problem. Int. J. Comput. Vis. (IJCV) 81(2), 155–166 (2009)

    Article  Google Scholar 

  17. Levenberg, K.: A method for the solution of certain problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  Google Scholar 

  18. Maimon, O., Rokach, L.: Data Mining and Knowledge Discovery Handbook. Springer, US (2010)

    Book  Google Scholar 

  19. Manecy, A., Marchand, N., Ruffier, F., Viollet, S.: X4-mag: A low-cost open-source micro-quadrotor and its Linux-based controller. Int. J. Micro. Air. Veh. (IJMAV) 7(2), 89–110 (2015)

    Article  Google Scholar 

  20. Mei, C., Rives, P.: Single view point omnidirectional camera calibration from planar grids. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3945–3950 (2007)

  21. Merriaux, P., Dupuis, Y., Boutteau, R., Vasseur, P., Savatier, X.: A study of vicon system positioning performance. Sensors 17, 1591 (2017)

    Article  Google Scholar 

  22. Merriaux, P., Dupuis, Y., Boutteau, R., Vasseur, P., Savatier, X.: Robust robot localization in a complex oil and gas industrial environment. J. Field Robot. (JFR) 35(2), 213–230 (2018). https://doi.org/10.1002/rob.21735

    Article  Google Scholar 

  23. Mur-Artal, R., Tardós, J.: Orb-slam2: an open-source slam system for monocular, stereo and rgb-d cameras. IEEE Trans. Robot. 33, 1255–1262 (2017)

    Article  Google Scholar 

  24. Nobili, S., Dominguez, S., Garcia, G., Martinet, P.: 16 channels velodyne versus planar lidars based perception system for large scale 2d-slam. In: 7th Workshop on Planning, Perception and Navigation for Intelligeng Vehicles (2015)

  25. Shah, S., Aggarwal, J.: Intrinsic parameter calibration procedure for a (high-distortion) fish-eye lens camera with distortion model and accuracy estimation. Pattern Recogn. 29(11), 1775–1788 (1996)

    Article  Google Scholar 

  26. Sturm, P., Ramalingam, S., Tardif, J., Gasparini, S., Barreto, J.: Camera models and fundamental concepts used in geometric computer vision. Foundations and Trends in Computer Graphics and Vision 6(1-2), 1–183 (2011)

    Article  Google Scholar 

  27. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  28. Wang, R., Schworer, M., Cremers, D.: Stereo dso: Large-scale direct sparse visual odometry with stereo cameras. In: IEEE International Conference on Computer Vision (ICCV), pp. 3903–3911 (2017)

  29. Ying, X., Hu, Z.: Can we consider central catadioptric cameras and fisheye cameras within a unified imaging model. In: European Conference on Computer Vision (ECCV), pp 442–455. Springer (2004)

  30. Zhang, J., Lyu, Y., Roppel, T., Patton, J., Senthilkumar, C.: Mobile robot for retail inventory using rfid. In: IEEE International Conference on Industrial Technology (ICIT), pp. 101–106 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Boutteau.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutteau, R., Rossi, R., Qin, L. et al. A Vision-Based System for Robot Localization in Large Industrial Environments. J Intell Robot Syst 99, 359–370 (2020). https://doi.org/10.1007/s10846-019-01114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01114-x

Keywords

Navigation