Skip to main content
Log in

Control of Multi-Agent Collaborative Fixed-Wing UASs in Unstructured Environment

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In recent years, the study of dynamics and control of swarming robots and aircraft has been an active research topic. Many multi-agent collaborative control algorithms have been developed and have been validated in simulations, however the technological and logistic complexity involved in validation of these algorithms in actual flight tests has been a major hurdle impeding more frequent and wider applications. This work presents robust navigation algorithms for multi-agent fixed-wing aircraft based on an adaptive moving mesh partial differential equations controlled by the free energy heat flow equation. Guidance, navigation, and control algorithms for control of multi-agent unmanned aerial system (UASs) were validated through actual flight tests, and the robustness of these algorithms were also investigated using different aircraft platforms. The verification and validation flight tests were conducted using two different fixed-wing platforms: A DG808 sail-plane with a 4m wingspan T-tail configuration and a Skyhunter aircraft utilizing a 2.4m wingspan and a twin-boom configuration. The developed swarm navigation algorithm uses a virtual leader guidance scheme and has been implemented and optimized using optimal control theory. Multi-scale moving point guidance has been developed and complimented by a linear quadratic regulator controller. Several flight tests have been successfully conducted and a system of systems including software and hardware was successfully validated and verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Siegwart, R., Beardsley, P.: Multi-robot system for artistic pattern formation. In: 2011 IEEE international conference on robotics and automation, pp. 4512–4517. IEEE (2011)

  2. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Siegwart, R., Beardsley, P.: Image and animation display with multiple mobile robots. Int. J. Robot. Res. 31(6), 753–773 (2012)

    Article  Google Scholar 

  3. Bayezit, I., Fidan, B.: Distributed cohesive motion control of flight vehicle formations. IEEE Trans. Ind. Electron. 60(12), 5763–5772 (2013)

    Article  Google Scholar 

  4. Bayraktar, S., Fainekos, G.E., Pappas, G.J.: Experimental cooperative control of fixed-wing unmanned aerial vehicles. In: 2004 43rd IEEE conference on decision and control (CDC)(IEEE Cat. No. 04CH37601), vol. 4, pp. 4292–4298. IEEE (2004)

  5. Boskovic, J.D., Li, S.M., Mehra, R.K.: Formation flight control design in the presence of unknown leader commands. In: Proceedings of the 2002 American control conference (IEEE Cat. No. CH37301), vol. 4, pp. 2854–2859. IEEE (2002)

  6. Chuang, Y.L., Huang, Y.R., D’Orsogna, M.R., Bertozzi, A.L.: Multi-vehicle flocking: scalability of cooperative control algorithms using pairwise potentials. In: Proceedings 2007 IEEE international conference on robotics and automation, pp. 2292–2299. IEEE (2007)

  7. Do, K.D.: Coordination control of multiple ellipsoidal agents with collision avoidance and limited sensing ranges. Syst. Control Lett. 61(1), 247–257 (2012)

    Article  MathSciNet  Google Scholar 

  8. Garcia, G., Keshmiri, S.: Nonlinear model predictive controller for navigation, guidance and control of a fixed-wing uav. In: AIAA guidance, navigation, and control conference, guidance, navigation, and control and Co-located conferences (2011)

  9. Gilles, J., Sharma, B.R., Ferenc, W., Kastein, H., Lieu, L., Wilson, R., Huang, Y.R., Bertozzi, A.L., HomChaudhuri, B., Ramakrishnan, S., et al.: Robot swarming over the internet. In: 2012 American control conference (ACC), pp. 6065–6070. IEEE (2012)

  10. Gonzalez, M., Huang, X., Martinez, D.S.H., Hsieh, C.H., Huang, Y.R., Irvine, B., Short, M.B., Bertozzi, A.L.: A third generation micro-vehicle testbed for cooperative control and sensing strategies. In: ICINCO (2), pp. 14–20 (2011)

  11. Huang, W., Russell, R.D.: Adaptive moving mesh methods. Springer, New York (2011)

    Book  Google Scholar 

  12. Hui, M.Y., Yang, C.Q., Xi, H.Z., Zheng, G.: An improved nonlinear guidance law for unmanned aerial vehicles path following. In: 2015 34th Chinese control conference (CCC), pp. 5271–5276. https://doi.org/10.1109/ChiCC.2015.7260462 (2015)

  13. Keshmiri, S., Kim, A., Blevins, A., Shukla, D.: Validation and verification flight test of uas morphing potential field collision avoidance algorithms. AIAA aviation and aeronautics forum and exposition (2018)

  14. Keshmiri, S., Kim, A.R., Shukla, D., Blevins, A., Ewing, M.: Flight test validation of collision and obstacle avoidance in fixed-wing uass with high speeds using morphing potential field. In: 2018 international conference on unmanned aircraft systems (ICUAS), pp. 589–598. https://doi.org/10.1109/ICUAS.2018.8453299 (2018)

  15. Kim, A.R., Keshmiri, S., Huang, W., Garcia, G.: Guidance of multi-agent fixed-wing aircraft using a moving mesh method. Unmanned Systems 04(03), 227–244 (2016). https://doi.org/10.1142/S2301385016500084

    Article  Google Scholar 

  16. Lin, Z., Ding, W., Yan, G., Yu, C., Giua, A.: Leader–follower formation via complex laplacian. Automatica 49(6), 1900–1906 (2013)

    Article  MathSciNet  Google Scholar 

  17. Liu, W., Taima, Y.E., Short, M.B., Bertozzi, A.L.: Multi-scale collaborative searching through swarming. In: ICINCO (2), pp. 222–231 (2010)

  18. Mesbahi, M.: On state-dependent dynamic graphs and their controllability properties. IEEE Trans. Autom. Control 50(3), 387–392 (2005)

    Article  MathSciNet  Google Scholar 

  19. Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The grasp multiple micro-uav testbed. IEEE Robot. Autom. Mag. 17(3), 56–65 (2010)

    Article  Google Scholar 

  20. Nguyen, B.Q., Chuang, Y.L., Tung, D., Hsieh, C., Jin, Z., Shi, L., Marthaler, D., Bertozzi, A., Murray, R.M.: Virtual attractive-repulsive potentials for cooperative control of second order dynamic vehicles on the caltech mvwt. In: Proceedings of the 2005, American control conference, 2005., pp. 1084–1089. IEEE (2005)

  21. Nigam, N., Bieniawski, S., Kroo, I., Vian, J.: Control of multiple uavs for persistent surveillance: algorithm and flight test results. IEEE Trans. Control Syst. Technol. 20(5), 1236–1251 (2012)

    Article  Google Scholar 

  22. Olfati-Saber, R., Murray, R.M.: Graph rigidity and distributed formation stabilization of multi-vehicle systems (2002)

  23. Park, S., Deyst, J., How, J.: A new nonlinear guidance logic for trajectory tracking. In: AIAA guidance, navigation, and control conference and exhibit, guidance, navigation, and control and Co-located conferences, pp. 1–16 (2004)

  24. Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. 1–1. https://doi.org/10.1109/TFUZZ.2019.2895560 (2019)

    Article  Google Scholar 

  25. Ratnoo, A., Sujit, P., Kothari, M.: Adaptive optimal path following for high wind flights. In: Preprints of the 18th IFAC world congress, pp. 12985–12990 (2011)

    Article  Google Scholar 

  26. Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  27. Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  28. Ren, W., Cao, Y.: Distributed coordination of multi-agent networks: emergent problems, models, and issues. Springer Science & Business Media (2010)

  29. Rezaee, H., Abdollahi, F.: A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Trans. Ind. Electron. 61(1), 347–354 (2014)

    Article  Google Scholar 

  30. Roskam, J.: Airplane flight dynamics and automatic flight controls Part I. DARcorporation (2003)

  31. Saber, R.O., Dunbar, W.B., Murray, R.M.: Cooperative control of multi-vehicle systems using cost graphs and optimization. In: Proceedings of the 2003 American control conference, 2003., vol. 3, pp. 2217–2222. IEEE (2003)

  32. Semsar-Kazerooni, E., Khorasani, K.: Optimal consensus algorithms for cooperative team of agents subject to partial information. Automatica 44(11), 2766–2777 (2008)

    Article  MathSciNet  Google Scholar 

  33. Semsar-Kazerooni, E., Khorasani, K.: An optimal cooperation in a team of agents subject to partial information. Int. J. Control. 82(3), 571–583 (2009)

    Article  MathSciNet  Google Scholar 

  34. Stastny, T.J., Garcia, G., Keshmiri, S.: Robust three-dimensional collision avoidance for fixed-wing unmanned aerial systems. https://arc.aiaa.org/doi/abs/10.2514/6.2015-1988

  35. Stevens, B.L., Lewis, F.L.: Aircraft control and simulation. J Wiley (2003)

  36. Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 1–1. https://doi.org/10.1109/TFUZZ.2018.2883374 (2018)

    Article  Google Scholar 

  37. United States Government Accountability Office: Defense acquisitions assessments of selected weapon programs. https://www.gao.gov/assets/660/653379.pdf (2013)

  38. Xi, X., Abed, E.H.: Formation control with virtual leaders and reduced communications. In: Proceedings of the 44th IEEE conference on decision and control, pp. 1854–1860. IEEE (2005)

  39. Xiao, J., Zhang, J., Adler, B., Zhang, H., Zhang, J.: Three-dimensional point cloud plane segmentation in both structured and unstructured environments, vol. 61. http://www.sciencedirect.com/science/article/pii/S0921889013001152 (2013)

    Article  Google Scholar 

  40. Xiao, J., Zhang, J., Zhang, J., Zhang, H., Hildre, H.P.: Fast plane detection for slam from noisy range images in both structured and unstructured environments. In: 2011 IEEE international conference on mechatronics and automation, pp. 1768–1773. https://doi.org/10.1109/ICMA.2011.5986247 (2011)

  41. Zheping, Y., Yibo, L., Jiajia, Z., Gengshi, Z.: Moving target following control of multi-auvs formation based on rigid virtual leader-follower under ocean current. In: 2015 34th Chinese control conference (CCC), pp. 5901–5906. IEEE (2015)

  42. Zunli, N., Xuejun, Z., Xiangmin, G.: Uav formation flight based on artificial potential force in 3d environment. In: 2017 29th Chinese control and decision conference (CCDC), pp. 5465–5470. IEEE (2017)

Download references

Acknowledgements

This work was completed with funding from NASA Learn project #NNX15AN94A and NASA CAN project #NNX15AN04A at the University of Kansas. The authors greatly appreciate this NASA support. In addition, the authors would like to thank our UAS pilot Matt Tener and KUAE undergraduate student Grant Godfrey for all of their support during flight testing operations. The author appreciates the help from Dr. Gonzalo Garcia for building the simulation environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Ram Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, A.R., Keshmiri, S., Blevins, A. et al. Control of Multi-Agent Collaborative Fixed-Wing UASs in Unstructured Environment. J Intell Robot Syst 97, 205–225 (2020). https://doi.org/10.1007/s10846-019-01057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01057-3

Keywords

Navigation