Skip to main content
Log in

An Intelligent Hybrid Artificial Neural Network-Based Approach for Control of Aerial Robots

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this work, a learning model-free control method is proposed for accurate trajectory tracking and safe landing of unmanned aerial vehicles (UAVs). A realistic scenario is considered where the UAV commutes between stations at high-speeds, experiences a single motor failure while surveying an area, and thus requires to land safely at a designated secure location. The proposed challenge is viewed solely as a control problem. A hybrid control architecture – an artificial neural network (ANN)-assisted proportional-derivative controller – is able to learn the system dynamics online and compensate for the error generated during different phases of the considered scenario: fast and agile flight, motor failure, and safe landing. Firstly, it deals with unmodelled dynamics and operational uncertainties and demonstrates superior performance compared to a conventional proportional-integral-derivative controller during fast and agile flight. Secondly, it behaves as a fault-tolerant controller for a single motor failure case in a coaxial hexacopter thanks to its proposed sliding mode control theory-based learning architecture. Lastly, it yields reliable performance for a safe landing at a secure location in case of an emergency condition. The tuning of weights is not required as the structure of the ANN controller starts to learn online, each time it is initialised, even when the scenario changes – thus, making it completely model-free. Moreover, the simplicity of the neural network-based controller allows for the implementation on a low-cost low-power onboard computer. Overall, the real-time experiments show that the proposed controller outperforms the conventional controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achtelik, M., Bierling, T., Wang, J., Höcht, L., Holzapfel, F.: Adaptive control of a quadcopter in the presence of large/complete parameter uncertainties. In: Infotech@ Aerospace 2011, p. 1485 (2011)

  2. Blanke, M., Frei, W. C., Kraus, F., Patton, J. R., Staroswiecki, M.: What is fault-tolerant Control? IFAC Proceedings Volumes 33(11), 41–52 (2000). 4th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes 2000 (SAFEPROCESS 2000), Budapest, Hungary, 14–16 (2000)

  3. Bouabdallah, S., Siegwart, R.: Design and control of a miniature Quadrotor, pp 171–210. Springer, Netherlands (2007)

    Google Scholar 

  4. Buskey, G., Wyeth, G., Roberts, J.: Autonomous helicopter hover using an artificial neural network. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation (Cat. No.01CH37164), vol. 2, pp. 1635–1640 vol.2 (2001)

  5. Dunfied, J., Tarbouchi, M., Labonte, G.: Neural network based control of a four rotor helicopter. In: 2004 IEEE international conference on industrial technology, 2004. IEEE ICIT ’04, vol. 3, pp. 1543–1548 Vol. 3 (2004)

  6. Efe, M. O.̈: Sliding mode control for unmanned aerial vehicles research. Springer International Publishing, Cham (2015)

    Book  Google Scholar 

  7. Erdal, K., Okyay, K.: Sliding mode control theory-based algorithm for online learning in type-2 fuzzy neural networks: application to velocity control of an electro hydraulic servo system. Int. J. Adapt Control Signal Process. 26(7), 645–659 (2012). 10.1002/acs.1292

    Article  MathSciNet  MATH  Google Scholar 

  8. Eren, U., Prach, A., Koċer, B. B., Raković, S. V., Kayacan, E., Aċıkmeṡe, B.: Model predictive control in aerospace systems: Current state and opportunities. Journal of Guidance, Control, and Dynamics pp. 1–25 (2017)

    Article  Google Scholar 

  9. Frangenberg, M., Stephan, J., Fichter, W.: Fast actuator fault detection and reconfiguration for multicopters. In: AIAA guidance, navigation, and control conference, p. 1766 (2015)

  10. Goodarzi, F., Lee, D., Lee, T.: Geometric nonlinear PID control of a Quadrotor UAV on SE(3). In: 2013 European control conference (ECC), pp. 3845–3850 (2013)

  11. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  12. Huang, H., Hoffmann, G. M., Waslander, S. L., Tomlin, C. J.: Aerodynamics and control of autonomous Quadrotor helicopters in aggressive maneuvering. In: 2009 IEEE international conference on robotics and automation, pp. 3277–3282 (2009)

  13. Imanberdiyev, N., Kayacan, E.: A fast learning control strategy for unmanned aerial manipulators. Journal of Intelligent & Robotic Systems (2018)

  14. Johnson, E., Kannan, S.: Adaptive flight control for an autonomous unmanned helicopter. In: AIAA guidance, navigation, and control conference and exhibit, p. 4439 (2002)

  15. Kayacan, E., Kayacan, E., Khanesar, M. A.: Identification of nonlinear dynamic systems using type-2 fuzzy neural networks – a novel learning algorithm and a comparative study. IEEE Trans. Ind. Electron. 62(3), 1716–1724 (2015)

    Article  Google Scholar 

  16. Kayacan, E., Kaynak, O., Abiyev, R., Tørresen, J., Høvin, M., Glette, K.: Design of an adaptive interval type-2 fuzzy logic controller for the position control of a servo system with an intelligent sensor. In: International Conference on Fuzzy Systems, pp. 1–8 (2010)

  17. Kayacan, E., Khanesar, M. A.: Chapter 7 - sliding mode control theory-based parameter adaptation rules for fuzzy neural networks. In: Kayacan, E., Khanesar, M.A. (eds.) Fuzzy neural networks for real time control applications, pp 85–131, Butterworth-Heinemann (2016)

  18. Kehlenbeck, A.: Quaternion-based control for aggressive trajectory tracking with a Micro-Quadrotor UAV. Ph.D. thesis, University of Maryland College Park (2014)

  19. Loianno, G., Brunner, C., McGrath, G., Kumar, V.: Estimation, control, and planning for aggressive flight with a small Quadrotor with a single camera and IMU. IEEE Robotics and Automation Letters 2(2), 404–411 (2017)

    Article  Google Scholar 

  20. Loianno, G., Spurny, V., Thomas, J., Baca, T., Thakur, D., Hert, D., Penicka, R., Krajnik, T., Zhou, A., Cho, A., Saska, M., Kumar, V.: Localization, Grasping, and Transportation of Magnetic Objects by a Team of MAVs in Challenging Desert-Like Environments. IEEE Robotics and Automation Letters 3 (3), 1576–1583 (2018)

    Article  Google Scholar 

  21. Lupashin, S., Schöllig, A., Sherback, M., D’Andrea, R.: A simple learning strategy for high-speed quadrocopter multi-flips. In: 2010 IEEE international conference on robotics and automation, pp. 1642–1648 (2010)

  22. Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: Modeling, estimation, and control of Quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)

    Article  Google Scholar 

  23. Mehndiratta, M., Kayacan, E.: Reconfigurable fault-tolerant NMPC for Y6 coaxial tricopter with complete loss of one rotor. In: 2018 IEEE conference on control technology and applications (CCTA), pp. 774–780 (2018)

  24. Meier, L., Honegger, D., Pollefeys, M.: PX4: A node-based multithreaded open source robotics framework for deeply embedded platforms. In: 2015 IEEE international conference on robotics and automation (ICRA), pp. 6235–6240. https://doi.org/10.1109/ICRA.2015.7140074 (2015)

  25. Meier, L., Tanskanen, P., Heng, L., Lee, G. H., Fraundorfer, F., Pollefeys, M.: PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard computer vision. Auton. Robot. 33(1), 21–39 (2012)

    Article  Google Scholar 

  26. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for Quadrotors. In: 2011 IEEE international conference on robotics and automation, pp. 2520–2525 (2011)

  27. Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with Quadrotors. Int. J. Robot. Res. 31(5), 664–674 (2012). https://doi.org/10.1177/0278364911434236

    Article  Google Scholar 

  28. Mistler, V., Benallegue, A., M’Sirdi, N. K.: Exact linearization and noninteracting control of a 4 rotors helicopter via dynamic feedback. In: Proceedings 10th IEEE international workshop on robot and human interactive communication. ROMAN 2001 (Cat. No.01TH8591), pp. 586–593 (2001)

  29. Mueller, M. W., D’Andrea, R.: Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers. In: 2014 IEEE international conference on robotics and automation (ICRA), pp. 45–52 (2014)

  30. Penrose, R.: A generalized inverse for matrices. Math. Proc. Camb. Philos. Soc. 51(3), 406–413 (1955)

    Article  Google Scholar 

  31. Pretorius, A., Boje, E.: Design and modelling of a Quadrotor helicopter with variable pitch rotors for aggressive manoeuvres. IFAC Proceedings 47(3), 12,208–12,213 (2014). 19th IFAC World Congress

    Article  Google Scholar 

  32. Purwin, O., D’Andrea, R.: Performing aggressive maneuvers using iterative learning control. In: 2009 IEEE international conference on robotics and automation, pp. 1731–1736 (2009)

  33. Rotondo, D., Nejjari, F., Puig, V.: Robust quasi–LPV model reference FTC of a Quadrotor UAV subject to actuator faults. Int. J. Appl. Math. Comput. Sci. 25(1), 7–22 (2015)

    Article  MathSciNet  Google Scholar 

  34. Saied, M., Lussier, B., Fantoni, I., Francis, C., Shraim, H., Sanahuja, G.: Fault diagnosis and fault-tolerant control strategy for rotor failure in an octorotor. In: 2015 IEEE international conference on robotics and automation (ICRA), pp. 5266–5271 (2015)

  35. Santos, M., López, V., Morata, F.: Intelligent fuzzy controller of a Quadrotor. In: 2010 IEEE international conference on intelligent systems and knowledge engineering, pp. 141–146 (2010)

  36. Sarabakha, A., Imanberdiyev, N., Kayacan, E., Khanesar, M. A., Hagras, H.: Novel Levenberg-Marquardt based learning algorithm for unmanned aerial vehicles. Inform. Sci. 417, 361–380 (2017)

    Article  Google Scholar 

  37. Sarabakha, A., Kayacan, E.: Y6 tricopter autonomous evacuation in an indoor environment using Q-learning algorithm. In: 2016 IEEE 55th conference on decision and control (CDC), pp. 5992–5997 (2016)

  38. Shen, S., Mulgaonkar, Y., Michael, N., Kumar, V.: Vision-based state estimation and trajectory control towards high-speed flight with a Quadrotor. In: Robotics: Science and Systems, vol. 1. Citeseer (2013)

  39. Siebert, S., Teizer, J.: Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Autom. Constr. 41, 1–14 (2014)

    Article  Google Scholar 

  40. Slegers, N., Kyle, J., Costello, M.: Nonlinear model predictive control technique for unmanned air vehicles. J. Guid. Control. Dyn. 29(5), 1179–1188 (2006)

    Article  Google Scholar 

  41. Spedicato, S., Notarstefano, G., Bülthoff, H. H., Franchi, A.: Aggressive maneuver regulation of a Quadrotor UAV, pp. 95–112. Springer International Publishing, Cham (2016)

    Google Scholar 

  42. Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., Grixa, I. L., Ruess, F., Suppa, M., Burschka, D.: Toward a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue. IEEE Robot. Autom. Mag. 19(3), 46–56 (2012)

    Article  Google Scholar 

  43. Vachtsevanos, G., Tang, L., Reimann, J.: An intelligent approach to coordinated control of multiple unmanned aerial vehicles. In: Proceedings of the American helicopter society 60th annual forum, Baltimore, MD (2004)

  44. Verhaegen, M., Kanev, S., Hallouzi, R., Jones, C., Maciejowski, J., Smail, H.: Fault tolerant flight control - a survey, pp 47–89. Springer, Berlin (2010)

    Book  Google Scholar 

  45. Wilburn, B. K., Perhinschi, M. G., Moncayo, H., Karas, O., Wilburn, J. N.: Unmanned aerial vehicle trajectory tracking algorithm comparison. International Journal of Intelligent Unmanned Systems 1(3), 276–302 (2013)

    Article  Google Scholar 

  46. Yildiz, Y., Sabanovic, A., Abidi, K.: Sliding-Mode Neuro-Controller for Uncertain Systems. IEEE Trans. Ind. Electron. 54(3), 1676–1685 (2007)

    Article  Google Scholar 

  47. Zhang, Y., Chamseddine, A., Rabbath, C., Gordon, B., Su, C. Y., Rakheja, S., Fulford, C., Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J. Franklin Inst. 350(9), 2396–2422 (2013)

    Article  Google Scholar 

  48. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 32(2), 229–252 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially financially supported by the Singapore Ministry of Education (RG185/17). In addition, this research was also partially supported by Aarhus University, Department of Engineering (28173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Kayacan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Sarabakha, A., Kircali, D. et al. An Intelligent Hybrid Artificial Neural Network-Based Approach for Control of Aerial Robots. J Intell Robot Syst 97, 387–398 (2020). https://doi.org/10.1007/s10846-019-01031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01031-z

Keywords

Navigation