Skip to main content
Log in

Delay-Dependent Stability Analysis in Haptic Rendering

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Nowadays haptic devices have lots of applications in virtual reality systems. While using a haptic device, one of the main requirements is the stable behavior of the system. An unstable behavior of a haptic device may damage itself and even may hurt its operator. Stability of haptic devices in the presence of inevitable time delay in addition to a suitable zero-order hold is studied in the presented paper, using two different methods. Both presented methods are based on Lyapunov-Krazuvskii functional. In the first method, a model transform is performed to determine the stability boundary, while the second approach is based on Free Weighing Matrices (FWMs). Delay-dependent stability criteria are determined by solving Linear Matrix Inequalities (LMIs). Results of these two methods are compared with each other and verified by simulations as well as experiments on a KUKA Light Weight Robot 4 (LWR4). It is concluded that using free weighing matrices leads to more unknown parameters and needs more calculation, but its results are less conservative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dang, Q.V., Vermeiren, L., Dequidt, A., Dambrine, M.: Analyzing stability of haptic interface using linear matrix inequality approach. In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1129–1134, IEEE (2012)

  2. Mashayekhi, A., Nahvi, A., Yazdani, M., Mohammadi Moghadam, M., Arbabtafti, M., Norouzi, M.: Virsense: A novel haptic device with fixed-base motors and a gravity compensation system. Indust. Robot: Int. J. 41(1), 37–49 (2014)

    Article  Google Scholar 

  3. Grajewski, D., Górski, F., Hamrol, A., Zawadzki, P.: Immersive and haptic educational simulations of assembly workplace conditions. Procedia Comput. Sci. 75, 359–368 (2015)

    Article  Google Scholar 

  4. You, B., Li, J., Ding, L., Xu, J., Li, W., Li, K., Gao, H.: Semi-autonomous bilateral teleoperation of hexapod robot based on haptic force feedback. J. Intell. Robot. Syst. 91(3–4), 583–602 (2018)

    Article  Google Scholar 

  5. Saafi, H., Laribi, M.A., Zeghloul, S.: Optimal torque distribution for a redundant 3-rrr spherical parallel manipulator used as a haptic medical device. Robot. Auton. Syst. 89, 40–50 (2017)

    Article  Google Scholar 

  6. Yoon, H.U., Wang, R.F., Hutchinson, S.A., Hur, P.: Customizing haptic and visual feedback for assistive human–robot interface and the effects on performance improvement. Robot. Auton. Syst. 91, 258–269 (2017)

    Article  Google Scholar 

  7. Adams, R.J., Hannaford, B.: Stable haptic interaction with virtual environments. IEEE Trans. Robot. Autom. 15(3), 465–474 (1999)

    Article  Google Scholar 

  8. Hogan, N.: Controlling impedance at the man/machine interface. In: 1989 IEEE International Conference on Robotics and automation, 1989. Proceedings, pp. 1626–1631, IEEE (1989)

  9. Diolaiti, N., Niemeyer, G., Barbagli, F., Salisbury, J.K.: Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. IEEE Trans. Robot. 22(2), 256–268 (2006)

    Article  Google Scholar 

  10. Gil, J.J., Avello, A., Rubio, A., Florez, J.: Stability analysis of a 1 dof haptic interface using the Routh-Hurwitz criterion. IEEE Trans. Control Syst. Technol. 12(4), 583–588 (2004)

    Article  Google Scholar 

  11. Gil, J.J., Sánchez, E., Hulin, T., Preusche, C., Hirzinger, G.: Stability boundary for haptic rendering: Influence of damping and delay. J. Comput. Inf. Sci. Eng. 9(1), 011005 (2009)

    Article  Google Scholar 

  12. Hulin, T., Albu-Schaffer, A., Hirzinger, G.: Passivity and stability boundaries for haptic systems with time delay. IEEE Trans. Control Syst. Technol. 22(4), 1297–1309 (2014)

    Article  Google Scholar 

  13. Mashayekhi, A., Boozarjomehry, R.B., Nahvi, A., Meghdari, A., Asgari, P.: Improved passivity criterion in haptic rendering: influence of coulomb and viscous friction. Adv. Robot. 28(10), 695–706 (2014)

    Article  Google Scholar 

  14. Abbott, J.J., Okamura, A.M.: Effects of position quantization and sampling rate on virtual-wall passivity. IEEE Trans. Robot. 21(5), 952–964 (2005)

    Article  Google Scholar 

  15. van der Schaft, A.: L2-Gain and Passivity Techniques in Nonlinear Control. Springer (2017)

  16. Ryu, J.-H., Kim, Y.S., Hannaford, B.: Sampled-and continuous-time passivity and stability of virtual environments. IEEE Trans. Robot. 20(4), 772–776 (2004)

    Article  Google Scholar 

  17. Ryu, J.-H., Preusche, C., Hannaford, B., Hirzinger, G.: Time domain passivity control with reference energy following. IEEE Trans. Control Syst. Technol. 13(5), 737–742 (2005)

    Article  Google Scholar 

  18. Minsky, M., Ming, O.-Y., Steele, O., Brooks, F.P. Jr., Behensky, M.: Feeling and seeing: Issues in force display. In: ACM SIGGRAPH Computer Graphics, vol. 24, pp. 235–241, ACM (1990)

  19. Mehling, J.S., Colgate, J.E., Peshkin, M.A.: Increasing the impedance range of a haptic display by adding electrical damping. In: Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pp. 257–262, IEEE (2005)

  20. Tognetti, L.J., Book, W.J.: Effects of increased device dissipation on haptic two-port network performance. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 3304–3311, IEEE (2006)

  21. Gosline, A.H., Campion, G., Hayward, V.: On the use of eddy current brakes as tunable, fast turn-on viscous dampers for haptic rendering. In: Proceedings of Eurohaptics, pp. 229–234 (2006)

  22. Colgate, J.E., Schenkel, G.: Passivity of a class of sampled-data systems: Application to haptic interfaces. In: American Control Conference, 1994, vol. 3, pp. 3236–3240. IEEE (1994)

  23. Janabi-Sharifi, F., Hayward, V., Chen, C.-S.: Discrete-time adaptive windowing for velocity estimation. IEEE Trans. Control Syst. Technol. 8(6), 1003–1009 (2000)

    Article  Google Scholar 

  24. Mashayekhi, A., Behbahani, S., Ficuciello, F., Siciliano, B.: Analytical stability criterion in haptic rendering: The role of damping. IEEE/ASME Trans. Mechatron. 23(2), 596–603 (2018)

    Article  Google Scholar 

  25. Wu, M., He, Y., She, J.-H.: Stability Analysis and Robust Control of Time-Delay Systems. Springer (2010)

  26. Tian, E., Peng, C.: Delay-dependent stability analysis and synthesis of uncertain t–s fuzzy systems with time-varying delay. Fuzzy Sets Syst. 157(4), 544–559 (2006)

    Article  MathSciNet  Google Scholar 

  27. Wu, H.-N.: Delay-dependent stability analysis and stabilization for discrete-time fuzzy systems with state delay: A fuzzy lyapunov-krasovskii functional approach. IEEE Trans. Syst. Man Cybern/ Part B (Cybernetics) 36(4), 954–962 (2006)

    Article  Google Scholar 

  28. Cao, J., Yuan, K., Li, H.-X.: Global asymptotical stability of recurrent neural networks with multiple discrete delays and distributed delays. IEEE Trans. Neural Netw. 17(6), 1646–1651 (2006)

    Article  Google Scholar 

  29. Fridman, E.: New Lyapunov–Krasovskii functionals for stability of linear retarded and neutral type systems. Syst. Control Lett. 43(4), 309–319 (2001)

    Article  MathSciNet  Google Scholar 

  30. He, Y., Wu, M., She, J.-H.: Delay-dependent stability criteria for linear systems with multiple time delays. IEE Proc.-Control Theory Appl. 153(4), 447–452 (2006)

    Article  MathSciNet  Google Scholar 

  31. Craig, J.J.: Introduction to Robotics: Mechanics and Control, vol. 3. Pearson/Prentice, Hall Upper Saddle River (2005)

    Google Scholar 

  32. Hulin, T., Preusche, C., Hirzinger, G.: Stability boundary for haptic rendering: Influence of human operator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. IROS 2008, pp. 3483–3488. IEEE (2008)

  33. Karami, A., Sadeghian, H., Keshmiri, M.: Novel approaches to control multiple tasks in redundant manipulators: stability analysis and performance evaluation. Adv. Robot., 1–12 (2018)

  34. “Lightweight robot four documentation.” https://www.kukakore.com/wp-content/uploads/. Accessed 2019-01-17

  35. “Fast research interface library.” https://cs.stanford.edu/people/tkr/fri/html/. Accessed 2019-01-17

  36. Mashayekhi, A., Behbahani, S., Ficuciello, F., Siciliano, B.: A closed-form stability criterion in haptic rendering. Submitted to Transactions on Haptics (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Behbahani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashayekhi, A., Behbahani, S., Ficuciello, F. et al. Delay-Dependent Stability Analysis in Haptic Rendering. J Intell Robot Syst 97, 33–45 (2020). https://doi.org/10.1007/s10846-019-01017-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01017-x

Keywords

Navigation