Evolutionary Modular Robotics: Survey and Analysis

  • Reem J. Alattas
  • Sarosh Patel
  • Tarek M. Sobh
Open Access


This paper surveys various applications of artificial evolution in the field of modular robots. Evolutionary robotics aims to design autonomous adaptive robots automatically that can evolve to accomplish a specific task while adapting to environmental changes. A number of studies have demonstrated the feasibility of evolutionary algorithms for generating robotic control and morphology. However, a huge challenge faced was how to manufacture these robots. Therefore, modular robots were employed to simplify robotic evolution and their implementation in real hardware. Consequently, more research work has emerged on using evolutionary computation to design modular robots rather than using traditional hand design approaches in order to avoid cognition bias. These techniques have the potential of developing adaptive robots that can achieve tasks not fully understood by human designers. Furthermore, evolutionary algorithms were studied to generate global modular robotic behaviors including; self-assembly, self-reconfiguration, self-repair, and self-reproduction. These characteristics allow modular robots to explore unstructured and hazardous environments. In order to accomplish the aforementioned evolutionary modular robotic promises, this paper reviews current research on evolutionary robotics and modular robots. The motivation behind this work is to identify the most promising methods that can lead to developing autonomous adaptive robotic systems that require the minimum task related knowledge on the designer side.


Evolutionary robotics Modular robots Task-based design Self-assembly Self-reconfiguration Self-repair Self-reproduction 



  1. 1.
    Lipson, H.: Uncontrolled engineering: a review of S. Nolfi and D. Floreano’s evolutionary robotics. Artif. Life 4(7), 419–424 (2000)Google Scholar
  2. 2.
    Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74–83 (2013)CrossRefGoogle Scholar
  3. 3.
    Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues in evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016)CrossRefGoogle Scholar
  4. 4.
    Alattas, R: Analyzing modular robotic systems. In: Online Engineering & Internet of Things, pp. 1014–1028. Springer, Berlin (2018)Google Scholar
  5. 5.
    Faíña, A., Bellas, F., López-Peña, F., Duro, R.J.: EDHMoR: evolutionary designer of heterogeneous modular robots. Eng. Appl. Artif. Intell. 26(10), 2408–2423 (2013)CrossRefGoogle Scholar
  6. 6.
    Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Handbook of Robotics, Chap 61 (2007)Google Scholar
  7. 7.
    Sofge, D.A., Potter, M.A., Bugajska, M.D., Schultz, A.C.: Challenges and opportunities of evolutionary robotics. In: Proceedings of the Second International Conference on Computational Intelligence, Robotics and Autonomous Systems. CIRAS, Singapore (2003)Google Scholar
  8. 8.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: the Biology, Intelligence, and Technology of Self-Organizing Machines. Bradford Books, Cambridge (2004)Google Scholar
  9. 9.
    Lipson, H.: Evolutionary robotics and open-ended design automation. Biomimetics 17(9), 129–155 (2005)CrossRefGoogle Scholar
  10. 10.
    Paul, C., Bongard, J.C.: The road less traveled: morphology in the optimization of biped robot locomotion. In: Proceedings of The IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2001). Hawaii (2001)Google Scholar
  11. 11.
    Zykov, V., Bongard, J.C., Lipson, H.: Evolving dynamic gaits on a physical robot. In: Proceedings of Genetic and Evolutionary Computation Conference GECCO’04 (2004)Google Scholar
  12. 12.
    Lund, H.H., Hallam, J., Lee, W.P.: Evolving robot morphology. In: IEEE International Conference on Evolutionary Computation, pp. 197–202 (1997)Google Scholar
  13. 13.
    Lund, H.H.: Co-evolving control and morphology with lego robots. In: Morpho-functional Machines: the New Species, pp. 59–79 (2003)Google Scholar
  14. 14.
    Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1(4), 28–39 (1994)CrossRefGoogle Scholar
  15. 15.
    Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)CrossRefGoogle Scholar
  16. 16.
    Yim, M., Duff, D., Roufas, K.: PolyBot: a modular reconfigurable robot. In: IEEE International Conference on Robotics and Automation ICRA’00, pp. 514–520 (2000)Google Scholar
  17. 17.
    Chen, I.M., Burdick, J.W.: Determining task optimal modular robot assembly configurations. In: IEEE International Conference on Robotics and Automation (1995)Google Scholar
  18. 18.
    Chung, W.K., Han, J., Youm, Y, Kim, S.H.: Task based design of modular robot manipulator using efficient genetic algorithm. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 507–512 (1997)Google Scholar
  19. 19.
    Chocron, O, Bidaud, P.: Evolutionary algorithms in kinematic design of robotic systems. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems IROS’97, vol. 2, pp. 1111–1117 (1997)Google Scholar
  20. 20.
    Yang, G., Chen, I.M.: Task-based optimization of modular robot configurations: minimized degree-of-freedom approach. Mech. Mach. Theory 35(4), 517–540 (2000)CrossRefzbMATHGoogle Scholar
  21. 21.
    Hornby, G.S., Lipson, H., Pollack, J.B.: Evolution of generative design systems for modular physical robots. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, vol. 4, pp. 4146–4151 (2001)Google Scholar
  22. 22.
    Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Self-organizing programmable parts. In: International Conference on Intelligent Robots and Systems, pp. 3684–3691 (2005)Google Scholar
  23. 23.
    Werfel, J.: Anthills built to order: automating construction with artificial swarms. Ph.D. dissertation, MIT (2006)Google Scholar
  24. 24.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: from Natural to Artificial Systems. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  25. 25.
    White, P.J., Kopanski, K., Lipson, H: Stochastic self-reconfigurable cellular robotics. In: Proceedings of IEEE International Conference on Robotics and Automation ICRA’04, vol. 3, pp. 2888–2893 (2004)Google Scholar
  26. 26.
    Tolley, M., Hiller, J., Lipson, H: Evolutionary design and assembly planning for stochastic modular robots. In: Proceedings of the IEEE Conference Intelligent Robotics and Systems (IROS), pp. 73–78 (2009)Google Scholar
  27. 27.
    White, P., Zykov, V., Bongard, J.C., Lipson, H: Three dimensional stochastic reconfiguration of modular robots. In: Robotics: Science and Systems, pp. 161–168 (2005)Google Scholar
  28. 28.
    Yim, M., Zhang, Y., Duff, D.: Modular robots. IEEE Spectr. 39(2), 30–34 (2002)CrossRefGoogle Scholar
  29. 29.
    Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Automat. Mag. 14(1), 43–52 (2007)CrossRefGoogle Scholar
  30. 30.
    Østergaard, E.H., Kassow, K., Beck, R, Lund, H.H.: Design of the ATRON lattice-based self-reconfigurable robot. Auton. Robot. 21(2), 165–183 (2006)CrossRefGoogle Scholar
  31. 31.
    Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S: M-TRAN: self-reconfigurable modular. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)CrossRefGoogle Scholar
  32. 32.
    Kurokawa, H., Kamimura, A., Yoshida, E., Tomita, K., Kokaji, S., Murata, S: M-TRAN II: metamorphosis from a four-legged walker to a caterpillar. In: Intelligent Robots and Systems (IROS03), vol. 3, pp. 2454–2459 (2003)Google Scholar
  33. 33.
    Yim, M., Eldershaw, C., Zhang, Y., Duff, D.: Self-reconfigurable robot systems: PolyBot. Open image in new window21(8):851–854Google Scholar
  34. 34.
    Golovinsky, A., Yim, M., Zhang, Y., Eldershaw, C., Duff, D: PolyBot and PolyKinetic™ System: a modular robotic platform for education. In: Proceedings of IEEE International Conference Robotics and Automation ICRA’04, vol. 2, pp. 1381–1386 (2004)Google Scholar
  35. 35.
    Duff, D., Yim, M., Roufas, K.: Evolution of polybot: a modular reconfigurable robot. In: Proceedings of the Harmonic Drive International Symposium, Nagano (2001)Google Scholar
  36. 36.
    Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with polybot. IEEE/ASME Trans. Mechatron. 7(4), 442–451 (2002)CrossRefGoogle Scholar
  37. 37.
    Zhao, J., Cui, X., Zhu, Y., Tang, S.: A new self-reconfigurable modular robotic system UBot: Multi-mode locomotion and self-reconfiguration. In: 2011 IEEE International Conference on Robotics and automation (ICRA), pp. 1020–1025 (2011)Google Scholar
  38. 38.
    Fukuda, T, Kawauchi, Y.: Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator. In: IEEE International Conference on Robotics and Automation (ICRA90), pp. 662–667 (1990)Google Scholar
  39. 39.
    Fukuda, T., Nakagawa, S.: Method of autonomous approach, docking and detaching between cells for dynamically reconfigurable robotic system CEBOT. JSME Int. J. Ser. 3, Vib. Control Eng. Eng. Ind. 33(2), 263–268 (1990)Google Scholar
  40. 40.
    Fukuda, T., Buss, M., Hosokai, H., Kawauchi, Y.: Cell structured robotic system CEBOT: control, planning and communication methods. Robot. Auton. Syst. 7(2–3), 239–248 (1991)CrossRefGoogle Scholar
  41. 41.
    Østergaard, E.H., Lund, H.H.: Evolving control for modular robotic units. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), pp. 886–892 (2003)Google Scholar
  42. 42.
    Haghzad, S., Bagheri, S., Faraji, S.: Finding proper configurations for modular robots by using genetic algorithm on different terrains. Int. J. Mater. Mech. Manuf. 1(4), 360–365 (2013)Google Scholar
  43. 43.
    Zykov, V., Mytilinaios, E., Desnoyer, M., Lipson, H: Evolved and designed self-reproducing modular robotics. IEEE Trans. Robot. 23(2), 308–319 (2007)CrossRefGoogle Scholar
  44. 44.
    Rus, D., Vona, M: Crystalline robots: self-reconfiguration with compressible units modules. Auton. Robot. (special issue on Modular Reconfigurable Robots) 10(1), 107–124 (2001)zbMATHGoogle Scholar
  45. 45.
    Suh, W., Homans, S.B., Yim, M: Telecubes: mechanical design of a module for self-reconfigurable robotics. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, pp. 4095–4101 (2002)Google Scholar
  46. 46.
    Vassilvitskii, S., Yim, M., Suh, J.: A complete, local and parallel reconfiguration algorithm for cube style modular robots. In: Proceedings of IEEE International Conference on Robotics and Automation ICRA’02, vol. 1, pp. 117–122 (2002)Google Scholar
  47. 47.
    Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., Murata, S: Distributed self-reconfiguration of M-TRAN III modular robotic system. Int. J. Robot. Res. 2(3–4), 373–386 (2008)CrossRefGoogle Scholar
  48. 48.
    Yim, M: A reconfigurable modular robot with many modes of locomotion. In: Proceedings of the JSME International Conference on Advanced Mechatronics, Tokyo, pp. 283–288 (1993)Google Scholar
  49. 49.
    Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Programmable parts: a demonstration of the grammatical approach to self-organization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2644–2651 (2005)Google Scholar
  50. 50.
    Napp, N., Burden, S., Klavins, E.: The statistical dynamics of programmed self-assembly. In: Proceedings 2006 IEEE International Conference on Robotics and Automation ICRA, vol. 2006 , pp. 1469–1476 (2006)Google Scholar
  51. 51.
    Gonzalez-Gomez, J., Boemo, E.: Motion of minimal configurations of a modular robot: sinusoidal, lateral rolling and lateral shift. Climbing and Walking Robots, pp. 667–674 (2006)Google Scholar
  52. 52.
    Zykov, V., Chan, A., Lipson, H.: Molecubes: an open-source modular robotics kit. In: IROS-2007 Self-Reconfigurable Robotics Workshop, pp. 3–6 (2007)Google Scholar
  53. 53.
    Zykov, V., Phelps, W., Lassabe, N., Lipson, H: Molecubes extended: diversifying capabilities of open-source modular robotics. In: IROS-2008 Self-Reconfigurable Robotics Workshop, pp. 22–26 (2008)Google Scholar
  54. 54.
    Zhong, H., Li, Z., Zhang, H., Yu, C., Li, N.: Modular robot path planning using genetic algorithm based on gene pool. Advances in Computation and Intelligence, pp. 380–389 (2010)Google Scholar
  55. 55.
    Ryland, G.G, Cheng, H.H: Design of iMobot, an intelligent reconfigurable mobile robot with novel locomotion. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 60–65 (2010)Google Scholar
  56. 56.
    Ko, D, Cheng, H.H.: Reconfigurable software for reconfigurable modular robots. In: Proceedings of ICRA 2010 Workshop Modular Robots: State of the Art, p. 100 (2010)Google Scholar
  57. 57.
    Zhao, J., Cui, X., Zhu, Y., Tang, S.: UBot: a new reconfigurable modular robotic system with multimode locomotion ability. Ind. Robot Int. J. 39(2), 178–190 (2012)CrossRefGoogle Scholar
  58. 58.
    Zhu, Y., Zhao, J., Cui, X., Wang, X., Tang, S., Zhang, X., Yin, J.. In: IEEE International Conference on Mechatronics and automation (ICMA), pp. 1217–1222 (2013)Google Scholar
  59. 59.
    Davey, J., Kwok, N., Yim, M: October. Emulating self-reconfigurable robots-design of the SMORES system. In: IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4464–4469 (2012)Google Scholar
  60. 60.
    Tosun, T., Jing, G., Kress-Gazit, H., Yim, M.: Computer-aided compositional design and verification for modular robots. In: Robotics Research, pp. 237–252. Springer, Berlin (2018)Google Scholar
  61. 61.
    Pollack, J.B., Lipson, H., Ficici, S., Funes, P., Hornby, G., Watson, RA: Evolutionary techniques in physical robotics. In: International Conference on Evolvable Systems, pp. 175–186 (2000)Google Scholar
  62. 62.
    Auerbach, J., Aydin, D., Maesani, A., Kornatowski, P., Cieslewski, T., Heitz, G., Fernando, P., Loshchilov, I., Daler, L., Floreano, D. Robogen: robot generation through artificial evolution. In: Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems. pp. 136–137. MIT Press (2014)Google Scholar
  63. 63.
    Samuelsen, E., Glette, K: Real-world reproduction of evolved robot morphologies: automated categorization and evaluation. In: European Conference on the Applications of Evolutionary Computation, pp. 771–782. Springer (2015)Google Scholar
  64. 64.
    Cellucci, D., MacCurdy, R., Lipson, H., Risi, S.: 1D Printing of Recyclable Robots. IEEE Robot. Autom. Lett. 2(4), 1964–1971 (2017)CrossRefGoogle Scholar
  65. 65.
    Nedjah, N., Coelho, L. S., Mourelle, LM: Mobile Robots: the Evolutionary Approach. Springer, Berlin (2007)CrossRefzbMATHGoogle Scholar
  66. 66.
    Masehian, E., Sedighizadeh, D.: Classic and heuristic approaches in robot motion planning-a chronological review. World Acad. Sci. Eng. Technol. 29(1), 101–106 (2007)Google Scholar
  67. 67.
    Qu, H., Xing, K., Alexander, T.: An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots. Neurocomputing 120, 509–517 (2013)CrossRefGoogle Scholar
  68. 68.
    Contreras-Cruz, M.A., Ayala-Ramirez, V., Hernandez-Belmonte, U.H.: Mobile robot path planning using artificial bee colony and evolutionary programming. Appl. Soft. Comput. 30, 319–328 (2015)CrossRefGoogle Scholar
  69. 69.
    Lamini, C., Benhlima, S., Elbekri, A.: Genetic algorithm based approach for autonomous mobile robot path planning. Procedia Comput. Sci. 127, 180–189 (2018)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Reem J. Alattas
    • 1
  • Sarosh Patel
    • 1
  • Tarek M. Sobh
    • 1
  1. 1.Interdisciplinary Robotics, Intelligent Sensing and Control (RISC) Lab, School of EngineeringUniversity of BridgeportBridgeportUSA

Personalised recommendations