Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of Intelligent & Robotic Systems
  3. Article
Communication Within Multi-FSM Based Robotic Systems
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

A Critical Review of Communications in Multi-robot Systems

22 August 2022

Jennifer Gielis, Ajay Shankar & Amanda Prorok

On the robustness of consensus-based behaviors for robot swarms

29 May 2020

Majda Moussa & Giovanni Beltrame

Motion-based communication for robotic swarms in exploration missions

30 January 2023

Corentin Boucher, Rebecca Stower, … David St-Onge

Humanoid Robot Framework for Research on Cognitive Robotics

31 May 2018

Danilo H. Perico, Thiago P. D. Homem, … Reinaldo A. C. Bianchi

Resilient Robot Teams: a Review Integrating Decentralised Control, Change-Detection, and Learning

13 June 2022

David M. Bossens, Sarvapali Ramchurn & Danesh Tarapore

Perceptions or Actions? Grounding How Agents Interact Within a Software Architecture for Cognitive Robotics

09 November 2019

R. Marfil, A. Romero-Garces, … D. Voilmy

A study on force-based collaboration in swarms

11 November 2019

Chiara Gabellieri, Marco Tognon, … Antonio Franchi

Cooperative control and communication of intelligent swarms: a survey

01 May 2020

Kun Hou, Yajun Yang, … Jiazhe Lai

Real-time distributed non-myopic task selection for heterogeneous robotic teams

07 November 2018

Andrew J. Smith, Graeme Best, … Geoffrey A. Hollinger

Download PDF
  • Open Access
  • Published: 02 June 2018

Communication Within Multi-FSM Based Robotic Systems

  • Cezary ZieliÅ„ski1,
  • Maksym Figat  ORCID: orcid.org/0000-0002-1898-05401 &
  • René Hexel2 

Journal of Intelligent & Robotic Systems volume 93, pages 787–805 (2019)Cite this article

  • 1121 Accesses

  • 13 Citations

  • Metrics details

Abstract

The paper presents a robotic system design methodology based on the concept of an embodied agent decomposed into communicating subsystems, whose activities are specified in terms of FSMs invoking behaviours parameterised by transition functions and terminal conditions. In the implementation phase, this specification is transformed into a system composed of a whiteboard providing communication means and logically labelled FSMs (LLFSMs) defining the system behaviour. These concepts are used to generate the code of the robot controller. The inclusion of inter-subsystem communication model completes the resulting system design with respect to our previous work that did not account for this model. Thus communication plays a central role in this presentation. The design methodology is exemplified with a rudimentary table tennis ball-collecting robot. The presented methodology and the implementation tools are suitable and beneficial for application to the design of other robotic systems.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An architecture for autonomy. Int. J. Robot. Res. 17(4), 315–337 (1998)

    Article  Google Scholar 

  2. Arbib, M.: Handbook of Physiology – The Nervous System II. Motor Control, chap. Perceptual structures and distributed motor control, pp. 1449–1480. Wiley Online Library (1981)

  3. Arkin, R.C.: Motor schema-based mobile robot navigation. Int. J. Robot. Res. 8, 92–112 (1989)

    Article  Google Scholar 

  4. Arkin, R.C.: Cooperation without communication: Multiagent schema-based robot navigation. J. Robot. Syst. 9(3), 351–364 (1992)

    Article  Google Scholar 

  5. Arkin, R.C.: Behavior-Based Robotics. MIT press, Cambdrige (1998)

    Google Scholar 

  6. Armbrust, C., Kiekbusch, L., Ropertz, T., Berns, K.: Soft Robot Control with a Behaviour-Based Architecture. In: Soft Robotics, pp 81–91. Springer (2015)

  7. Asama, H., Ozaki, K., Matsumoto, A., Endo, I.: Development of task assignment system using communication for multiple autonomous robots. J. Robot. Mechatron. 4(2), 122–127 (1992)

    Article  Google Scholar 

  8. Balch, T., Arkin, R.C.: Communication in reactive multiagent robotic systems. Auton. Robot. 1(1), 27–52 (1994)

    Article  Google Scholar 

  9. Beetz, M., Mösenlechner, L., Tenorth, M.: CRAM – a Cognitive Robot Abstract Machine for Everyday Manipulation in Human Environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, October 18–22, 2010, Taipei, Taiwan, pp. 1012–1017. IEEE (2010)

  10. Bensalem, S., de Silva, L., Ingrand, F.R.Y.: A verifiable and correct-by-construction controller for robot functional levels. J. Softw. Eng. Robot. 2(1), 1–19 (2011)

    Google Scholar 

  11. Birman, K., Schiper, A., Stephenson, P.: Lightweight causal and atomic group multicast. ACM Trans. Comput. Syst. 9(3), 272–314 (1991)

    Article  Google Scholar 

  12. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: From natural to artificial systems. Oxford university press, New York (1999)

    MATH  Google Scholar 

  13. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  14. Brooks, R.A.: Intelligence without reason. Artif. Intell. Crit. Concepts 3, 107–163 (1991)

    MATH  Google Scholar 

  15. Brooks, R.A.: Intelligence without representation. Artif. Intell. 47(1-3), 139–159 (1991)

    Article  Google Scholar 

  16. Brugali, D. Software Engineering for Experimental Robotics. In: Brugali, D. (ed.) : Stable Analysis Patterns for Robot Mobility. Software Engineering for Experimental Robotics, pp 9–30. Springer Berlin Heidelberg, Berlin (2007). https://doi.org/10.1007/978-3-540-68951-5_2

  17. Brugali, D., Agah, A., MacDonald, B., Nesnas, I.A.D., Smart, W.D. Software Engineering for Experimental Robotics. In: Brugali, D. (ed.) : Trends in robot software domain engineering. Software Engineering for Experimental Robotics, pp 3–8. Springer Berlin Heidelberg, Berlin (2007). https://doi.org/10.1007/978-3-540-68951-5_1

  18. Cabrera-Gámez, J., Domínguez-Brito, A. C., Hernández-Sosa, D.: Sensor based intelligent robots. chap. CoolBOT: A Component-Oriented Programming Framework for Robotics, pp. 282–304. Springer Berlin / Heidelberg (2002)

  19. Chen, D., Hexel, R., Raja, F.: Engineering Real-Time Communication through Time-Triggered Subsumption: Towards Flexibility with Incus and Llfsms. In: Maciaszek, L., Filipe, J. (eds.) 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering. https://doi.org/10.5220/0005915602720281, pp 272 – 281, Rome (2016)

  20. Chen, J., Gauci, M., Li, W., Kolling, A., Groß, R.: Occlusion-based cooperative transport with a swarm of miniature mobile robots. IEEE Trans. Robot. 31(2), 307–321 (2015). https://doi.org/10.1109/TRO.2015.2400731

    Article  Google Scholar 

  21. Cheriton, D.R., Skeen, D.: Understanding the limitations of causally and totally ordered communication. SIGOPS Oper. Syst. Rev. 27(5), 44–57 (1993). https://doi.org/10.1145/173668.168623

    Article  Google Scholar 

  22. Corkill, D.: Blackboard systems. AI Expert. 6(9), 40–47 (1991)

    Google Scholar 

  23. Coste-Maniere, E., Simmons, R.: Architecture, the Backbone of Robotic Systems. In: 2000. Proceedings. ICRA ’00. IEEE International Conference On Robotics and Automation, vol. 1, pp 67–72 (2000). https://doi.org/10.1109/ROBOT.2000.844041

  24. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: A taxonomy for swarm robots. In: IROS ’93. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems ’93. https://doi.org/10.1109/IROS.1993.583135 , vol. 1, pp 441–447 (1993)

  25. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: Experiments in Sensing and Communication for Robot Convoy Navigation. In: Proceedings. 1995 IEEE/RSJ International Conference On Intelligent Robots and Systems 95. ’Human Robot Interaction and Cooperative Robots. https://doi.org/10.1109/IROS.1995.526171, vol. 2, pp 268–273 (1995)

  26. Dudek, G., Jenkin, M.R.M., Milios, E., Wilkes, D.: A taxonomy for multi-agent robotics. Auton. Robot. 3(4), 375–397 (1996). https://doi.org/10.1007/BF00240651

    Article  Google Scholar 

  27. Einhorn, E., Langner, T., Stricker, R., Martin, C., Gross, H.M.: MIRA - Middleware for robotic applications. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura. https://doi.org/10.1109/IROS.2012.6385959. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6385959&isnumber=6385431, pp 2591–2598 (2012)

  28. Estivill-Castro, V., Hexel, R.: Arrangements of finite-state machines - semantics, simulation, and model checking. In: Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD, pp. 182–189 (2013). https://doi.org/10.5220/0004317101820189

  29. Estivill-Castro, V., Hexel, R.: Correctness by Construction with Logic-Labeled Finite-State Machines – Comparison with Event-B. In: Zhu, L., Steel, J. (eds.) Proceedings of 23Rd Australasian Software Engineering Conference (ASWEC), pp 38–47. IEEE Computer Society Conference Publishing Services (CPS), Milsons Point (2014)

  30. Estivill-Castro, V., Hexel, R.: Simple, Not Simplistic — the Middleware of Behaviour Models. In: Filipe, J., Maciaszek, L. A. (eds.) ENASE 10 International Conference on Evaluation of Novel Approaches to Software Engineering, pp 189–196. INSTCC, SciTePress, Av. Dom Manuel i, 2910-592, Setúbal (2015)

  31. Estivill-Castro, V., Hexel, R., Lusty, C.: High Performance Relaying of C++ 11 Objects across Processes and Logic-Labeled Finite-State Machines. In: Brugali, D., Broenink, J.F., Kroeger, T., MacDonald, B.A. (eds.) Simulation, Modeling, and Programming for Autonomous Robots - 4th International Conference, SIMPAR 2014, Lecture Notes in Computer Science, vol. 8810, pp 182–194. Springer (2014)

  32. Estivill-Castro, V., Hexel, R., Rosenblueth, D.A. Wang, P. (ed.): Efficient Model Checking and FMEA Analysis with Deterministic Scheduling of Transition-Labeled Finite-State Machines. IEEE Computer Society Conference Publishing Services (CPS), Wuhan (2012)

  33. Estivill-Castro, V., Hexel, R., Rosenblueth, D.A.: Efficient Modelling of Embedded Software Systems and Their Formal Verification. In: Leung, K. R., Muenchaisri, P. (eds.) The 19Th Asia-Pacific Software Engineering Conference (APSEC 2012), pp 428–433. IEEE Computer Society, Conference Publishing Services, Hong Kong (2012)

  34. Farinelli, A., Iocchi, L., Nardi, D.: Multirobot systems: a classification focused on coordination. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(5), 2015–2028 (2004). https://doi.org/10.1109/TSMCB.2004.832155

    Article  Google Scholar 

  35. Figat, M., Zieliński, C., Hexel, R.: Fsm Based Specification of Robot Control System Activities. In: 2017 11Th International Workshop on Robot Motion and Control (Romoco), pp. 193–198. https://doi.org/10.1109/RoMoCo.2017.8003912 (2017)

  36. Fleury, S., Herrb, M., Chatila, R.: Genom: A tool for the specification and the implementation of operating modules in a distributed robot architecture. Proc. 1997 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS’97) 2, 842–849 (1997). https://doi.org/10.1109/IROS.1997.655108

    Google Scholar 

  37. Fox, C., Evans, M., Pearson, M., Prescott, T.: Towards hierarchical blackboard mapping on a whiskered robot. Robot. Auton. Syst. 60(11), 1356–1366 (2012). https://doi.org/10.1016/j.robot.2012.03.005. Towards Autonomous Robotic Systems 2011

    Article  Google Scholar 

  38. Gat, E.: On Three-Layer Architectures. In: Kortenkamp, D., Bonnasso, R. P., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots, pp 195–210. AAAI Press, Cambridge (1998)

  39. Giffin, S.d.: A taxonomy of Internet applications for project management communication. Proj. Manag. J. 33 (4), 39–47 (2002)

    Article  Google Scholar 

  40. Group, O.M.: Data distribution service (dds). https://www.omg.org/spec/DDS/1.4

  41. Hayes-Roth, B.: A blackboard architecture for control. Artif. Intell. 26(3), 251–321 (1985)

    Article  Google Scholar 

  42. Hayes-Roth, B.: A blackboard architecture for control. In: Bond, A.H., Gasser, L. (eds.) Distributed Artificial Intelligence, pp 505–540. Morgan Kaufmann Publishers Inc., San Francisco (1988). http://dl.acm.org/citation.cfm?id=60204.60241

  43. Hayes-Roth, B., Hayes-Roth, F.: A cognitive model of planning. Cogn. Sci. 3(4), 275–310 (1979)

    Article  Google Scholar 

  44. Haykin, S.: Communication Systems, 5th edn. Wiley Publishing, Hoboken (2009)

    Google Scholar 

  45. Huntsberger, T.L., Trebi-Ollennu, A., Aghazarian, H., Schenker, P.S., Pirjanian, P., Nayar, H.D.: Distributed control of multi-robot systems engaged in tightly coupled tasks. Auton. Robot. 17 (1), 79–92 (2004). https://doi.org/10.1023/B:AURO.0000032939.08597.62

    Article  Google Scholar 

  46. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and development. Auton. Agents Multi-Agent Syst. 1(1), 7–38 (1998). https://doi.org/10.1023/A:1010090405266

    Article  Google Scholar 

  47. Joukoff, D., Estivill-Castro, V., Hexel, R., Lusty, C.: Fast MAV Control by Control/Status OO-Messages on Shared-Memory Middleware. In: Robot Intelligence Technology and Applications 4 - Results from the 4Th International Conference on Robot Intelligence Technology and Applications, RiTA 2015, Advances in Intelligent Systems and Computing, Vol. 345, pp. 195–211. Springer (2015)

  48. Jung, D., Zelinsky, A.: Grounded symbolic communication between heterogeneous cooperating robots. Auton. Robot. 8(3), 269–292 (2000). https://doi.org/10.1023/A:1008929609573

    Article  Google Scholar 

  49. Kiekbusch, L., Armbrust, C., Berns, K.: Formal verification of behaviour networks including sensor failures. Robot. Auton. Syst. 74, 331–339 (2015)

    Article  Google Scholar 

  50. Kiekbusch, L., Armbrust, C., Berns, K.: Formal Verification of Behaviour Networks including Hardware Failures. In: Intelligent Autonomous Systems 13, pp. 1571–1582. Springer (2016)

  51. Kopetz, H.: Should responsive systems be event-triggered or time-triggered? IEICE Trans. Inf. Syst. 76(11), 1325 (1993)

    Google Scholar 

  52. Kopetz, H.: Real-Time Systems - Design Principles for Distributed Embedded Applications, 2nd edn. Real-Time Systems Series. Springer, Berlin (2011)

    MATH  Google Scholar 

  53. Kopetz, H., Bauer, G.: The time-triggered architecture. Proc. IEEE 91(1), 112–126 (2003)

    Article  Google Scholar 

  54. Kornuta, T., Zieliński, C.: Robot control system design exemplified by multi-camera visual servoing. J. Intell. Robotic Syst. 77(3–4), 499–524 (2013). https://doi.org/10.1007/s10846-013-9883-x

    Google Scholar 

  55. Kortenkamp, D., Simmons, R.: Robotic Systems Architectures and Programming. In: Khatib, O., Siciliano, B. (eds.) Springer Handbook of Robotics, pp 187–206. Springer (2008)

  56. Kortenkamp, D., Simmons, R., Brugali, D.: Robotic Systems Architectures and Programming. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics. 2nd edn., pp 283–306. Springer (2016)

  57. Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems. ACM Trans. Progr. Lang. Syst. 6, 254–280 (1984)

    Article  Google Scholar 

  58. Lee, C., Hwang, J., Lee, J., Ahn, C., Suh, B., Shin, D.H., Nah, Y., Kim, D.H.: Self-Describing and Data Propagation Model for Data Distribution Service. In: Brinkschulte, U., Givargis, T., Russo, S. (eds.) Software Technologies for Embedded and Ubiquitous Systems, pp 102–113. Springer, Berlin (2008)

  59. Lumelsky, V.J., Stepanov, A.A.: Path-planning strategies for a point mobile automaton moving amidst obstacles of arbitrary shape. Algorithmica 2, 403–430 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  60. Lumia, R., Fiala, J., Wavering, A.: The nasrem robot control system standard. Robot. Comput.-Integr. Manuf. 6(4), 303 – 308 (1989). https://doi.org/10.1016/0736-5845(89)90120-8. Special Issue Robots in Manufacturing

    Article  Google Scholar 

  61. Lusty, C.: Cooperative Time-Triggered Wireless Communication in Mobile Robotics. Honours thesis, Griffith University (2012)

  62. Lyons, D.M.: Prerational intelligence, Studies in cognitive systems, vol. 2: Adaptive behavior and intelligent systems without symbols and logic, chap. A Schema-Theory Approach to Specifying and Analysing the Behavior of Robotic Systems, pp. 51–70 Kluwer Academic (2001)

  63. Lyons, D.M., Arbib, M.A.: A formal model of computation for sensory-based robotics. IEEE Trans. Robot. Autom. 5(3), 280–293 (1989). https://doi.org/10.1109/70.34764

    Article  Google Scholar 

  64. Majcher, P.: Autonomous Mobile Robot for Collecting Table Tenis Balls (Polish). Master’s thesis, Warsaw University of Technology (2012)

  65. Matarić, M.J.: Issues and approaches in the design of collective autonomous agents. Robot. Auton. Syst. 16 (2), 321 – 331 (1995). https://doi.org/10.1016/0921-8890(95)00053-4

    Article  Google Scholar 

  66. Matarić, M., Nilsson, M., Simsarian, K.: Cooperative Multi-Robot Box-Pushing. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 556–561 (1995)

  67. MiPal: Downloads (checked: 23 March 2018). http://mipal.net.au/downloads.php

  68. Nesnas, I.A.D. Software Engineering for Experimental Robotics. In: Brugali, D (ed.) : The CLARAty project: Coping with hardware and software heterogeneity, pp 31–70. Springer Berlin Heidelberg, Berlin (2007). https://doi.org/10.1007/978-3-540-68951-5_3

  69. Newell, A.: Some Problems of Basic Organization in Problem-Solving Programs. In: Yovitz, M., Jacobi, G., Goldstein, G. (eds.) Self-Organizing Systems, pp 393–423. Spartan, Washington (1962)

  70. Nii, H.P.: Blackboard systems, part two: Blackboard application systems, blackboard systems from a knowledge engineering perspective. AI Mag. 7, 82–106 (1986)

    Google Scholar 

  71. Nilsson, N.: Shakey the robot, technical note 323. Technical report, AI Center, SRI International, 333 Ravenswood Ave., Menlo Park, CA, pp. 94025 (1984)

  72. Occello, M., Chaouiya, C., Thomas, M.C.: A Parallel Blackboard Model for Mobile Robotics control, pp 439–447. Springer Netherlands, Dordrecht (1992). https://doi.org/10.1007/978-94-011-2526-0_51

    Google Scholar 

  73. Pang, G.K., Shen, H.C.: Intelligent control of an autonomous mobile robot in a hazardous material spill accident — a blackboard structure approach. Robot. Auton. Syst. 6(4), 351–365 (1990)

    Article  Google Scholar 

  74. Parker, L.: ALLIANCE: An architecture for fault tolerant multirobot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

    Article  MathSciNet  Google Scholar 

  75. Parker, L., Rus, D., Sukhatme, S.G.: Multiple Mobile Robot Systems. In: Khatib, O., Siciliano, B. (eds.) Springer Handbook of Robotics, pp 1335–1384. Springer (2016)

  76. Parker, L.E.: Alliance: an architecture for fault tolerant, cooperative control of heterogeneous mobile robots. In: IROS ’94. Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems ’94. Advanced Robotic Systems and the Real World, vol. 2, pp. 776–783 (1994)

  77. Postel, J.: Transmission Control Protocol, RFC 793. Technical report, University of Southern California, Information Sciences Institute. https://tools.ietf.org/html/rfc793 (1981)

  78. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source Robot Operating System. In: Proceedings of the Open-Source Software workshop at the International Conference on Robotics and Automation (ICRA) (2009)

  79. ROS: Parameter Server. http://wiki.ros.org/ParameterServer

  80. ROS: Technical Overview. http://wiki.ros.org/ROS/TechnicalOverview

  81. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014). https://doi.org/10.1126/science.1254295

    Article  Google Scholar 

  82. Schwartz, D.G.: Cooperating heterogeneous systems. Springer Science & Business Media, NO (1995)

    Book  MATH  Google Scholar 

  83. Shannon, C.E., Weaver, W.: A Mathematical Theory of Communication. University of Illinois Press, Baltimore (1963)

    MATH  Google Scholar 

  84. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley Publishing Company, USA (2010)

    MATH  Google Scholar 

  85. Song, D., Goldberg, K., Chong, N.Y.: Networked Robots. In: Khatib, O., Siciliano, B. (eds.) Springer Handbook of Robotics, pp 1109–1131. Springer (2016)

  86. Tanenbaum, A.S., Woodhull, A.S.: Operating Systems Design and Implementation, 3rd edn. Prentice-Hall, Inc., Upper Saddle River (2005)

    Google Scholar 

  87. Trianni, V., Nolfi, S., Dorigo, M.: Cooperative hole avoidance in a swarm-bot. Robot. Auton. Syst. 54 (2), 97–103 (2006). Intelligent Autonomous Systems 8th Conference on Intelligent Autonomous Systems (IAS-8)

    Article  Google Scholar 

  88. Ueyama, T., Fukuda, T., Arai, F.: Configuration of communication structure for distributed intelligent robotic system. Proc. - IEEE Int. Conf. Robot. Autom. 1, 807–812 (1992)

    Google Scholar 

  89. Yamada, S., Saito, J.: Adaptive action selection without explicit communication for multirobot box-pushing. IEEE Trans. Syst. Man Cybern. Part C 31(3), 398–404 (2001)

    Article  Google Scholar 

  90. Zieliński, C.: Description of semantics of robot programming languages. Mechatronics 2(2), 171–198 (1992)

    Article  Google Scholar 

  91. Zieliński, C.: A Quasi-Formal Approach to Structuring Multi-Robot System Controllers. In: Second International Workshop on Robot Motion and Control, Romoco’01, pp. 121–128 (2001)

  92. Zieliński, C., Figat, M.: Robot System Design Procedure Based on a Formal Specification. In: Recent Advances in Automation, Robotics and Measuring Techniques, Advances in Intelligent Systems and Computing (AISC), vol. 440, pp. 511–522. Springer (2016). https://doi.org/10.1007/978-3-319-29357-8_45

  93. Zieliński, C., Kornuta, T.: Diagnostic requirements in multi-robot systems. In: Intelligent Systems in Technical and Medical Diagnostics, vol. 230, pp. 345–356. Springer (2014). https://doi.org/10.1007/978-3-642-39881-0_29

  94. Zieliński, C., Kornuta, T., Winiarski, T.: A Systematic Method of Designing Control Systems for Service and Field Robots. In: 19-Th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR, pp. 1–14. IEEE (2014). https://doi.org/10.1109/MMAR.2014.6957317

  95. Zieliński, C., Trojanek, P.: Stigmergic cooperation of autonomous robots. J. Mech. Mach. Theory 44, 656–670 (2009)

    Article  MATH  Google Scholar 

  96. Zieliński, C., Winiarski, T.: General specification of multi-robot control system structures. Bullet. Pol. Acad. Sci. – Techn. Sci. 58(1), 15–28 (2010). https://doi.org/10.2478/v10175-010-0002-x

    Google Scholar 

  97. Zieliński, C., Winiarski, T.: Motion generation in the MRROC++ robot programming framework. Int. J. Robot. Res. 29(4), 386–413 (2010). https://doi.org/10.1177/0278364909348761

    Article  Google Scholar 

  98. Zieliński, C., Winiarski, T., Kornuta, T.: Agent-based structures of robot systems. In: K. J., et al. (eds.) Trends in Advanced Intelligent Control, Optimization and Automation, Advances in Intelligent Systems and Computing, vol. 577, pp 493–502 (2017). https://doi.org/10.1007/978-3-319-60699-6_48

Download references

Acknowledgments

This work was supported by the Erasmus Mundus Action 2 PANTHER (Pacific Atlantic Network for Technical Higher Education and Research) grant and by the National Science Centre, Poland (grant number 2017/25/N/ST7/00900).

Author information

Authors and Affiliations

  1. Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska 15/19, 00-665, Warsaw, Poland

    Cezary Zieliński & Maksym Figat

  2. School of ICT, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia

    René Hexel

Authors
  1. Cezary Zieliński
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Maksym Figat
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. René Hexel
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Cezary Zieliński.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zieliński, C., Figat, M. & Hexel, R. Communication Within Multi-FSM Based Robotic Systems. J Intell Robot Syst 93, 787–805 (2019). https://doi.org/10.1007/s10846-018-0869-6

Download citation

  • Received: 02 October 2017

  • Accepted: 08 May 2018

  • Published: 02 June 2018

  • Issue Date: 15 March 2019

  • DOI: https://doi.org/10.1007/s10846-018-0869-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Robotic system specification
  • Robotic system design methodology
  • Communication model
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.