Abstract
The rapid development of autonomous systems and Information and Communications Technologies (ICT) create new opportunities for maritime activities. Existing autonomous systems are becoming more powerful and utilise the capabilities of several types of devices such as Autonomous Underwater Vehicles (AUVs), Unmanned Surface Vehicles (USVs) – sometimes referred as Autonomous Surface Vehicles (ASVs) –, Unmanned Aerial Vehicles (UAVs), moored and drifting systems and, recently emerging, autonomous vessels. Their importance in providing new services in maritime environments is undeniable and the opportunity for coordinated and interconnected operations is clear. However, continuous wide integration of various technologies in maritime environments still faces many challenges. Operations may take place in remote locations, so that dependence on third-party infrastructures such as satellite communication or terrestrial communication systems must be expected. The reliability, performance, availability, and cost of such systems are important issues that need to be tackled. This work reviews the major advancements on state-of-the-art autonomous maritime vehicles and systems, which are used in several different scenarios, from scientific research to transportation. Moreover, the paper highlights how available technologies can be composed in order to efficiently and effectively operate in maritime environments. Highlights of the trade-off between autonomy and communication requirements are provided and followed by an overview of promising communication and networking technologies that could encourage the integration of autonomous systems in maritime scenarios.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Campbell, N.: Biology: Concepts & Connections. Pearson/Benjamin Cummings (2006), https://books.google.com.ng/books?id=OhdFAQAAIAAJ
European Union: The blue economy of the european union. http://ec.europa.eu/maritimeaffairs/documentation/publications/documents/poster-blue-growth-2015_en.pdf (2015), [Online; Accessed 13 Jul 2016]
Woodget, A.S., Carbonneau, P.E., Visser, F., Maddock, I.P.: Quantifying submerged fluvial topography using hyperspatial resolution uas imagery and structure from motion photogrammetry. Earth Surface Process Landforms 40(1), 47–64 (2015). https://doi.org/10.1002/esp.3613
Sivertsen, A., Solbø, S., Storvold, R., Tøllefsen, A., Johansen, K.S.: Automatic mapping of sea ice using unmanned aircrafts. In: ReCAMP Flagship Workshop Book of Abstracts. p. 30. ReCAMP Flagship Workshop, ReCAMP Flagship Workshop (2016), n/a
Lucieer, A., Turner, D., King, D.H., Robinson, S.A.: Using an unmanned aerial vehicle (uav) to capture micro-topography of antarctic moss beds. Int. J. Applied Earth Observ. Geoinform. Part A 27, 53–62 (2014). http://www.sciencedirect.com/science/article/pii/S0303243413000603 special Issue on Polar Remote Sensing (2013)
Solbø, S., Storvold, R., Sivertsen, A., Petrich, C., Sand, B.: Imaging sea ice structure by small remotely piloted aircraft. In: ReCAMP Flagship Workshop Book of Abstracts. p. 32. ReCAMP Flagship Workshop, ReCAMP Flagship Workshop (2016), n/a
Faria, M., Pinto, J., Py, F., Fortuna, J., Dias, H., Martins, R., Leira, F., Johansen, T.A., Sousa, J., Rajan, K.: Coordinating uavs and auvs for oceanographic field experiments: Challenges and lessons learned experiments in uav and auv control for coastal oceanography. In: IEEE Int. Conf. Robotics and Automation. Hong Kong (2014)
Ludvigsen, M., Dias, P.S., Ferreira, S., Fossum, T.O., Hovstein, V., Johansen, T.A., Krogstad, T.R., Midtgaard, Ø., Norgren, P., J.S., Sture, Ø., Vågsholm, E., Zolich, A.: Autonomous network of heterogeneous vehicles for marine research and management. In: IEEE Oceans 2016 – Monterey (2016)
Py, F., Pinto, J., Silva, M.A., Johansen, T.A., Sousa, J., K., R.: Europtus: A mixed-initiative controller for multi-vehicle oceanographic field experiments. In: Int. Symp. Experimental Robotics (2016)
Roemmich, D., Boehme, L., Claustre, H., Freeland, H., Fukasawa, M., Goni, G., Gould, W.J., Gruber, N., Hood, M., Kent, E., Lumpkin, R., Smith, S., Testor, P.: Integrating the ocean observing system: Mobile platforms. In: Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society. European Space Agency (2010) https://doi.org/10.5270/OceanObs09.pp.33
Greene, C.H., Meyer-Gutbrod, E.L., McGarry, L.P. Jr., L.C.H., McClatchie, S., Packer, A., Jung, J.B., Acker, T., Dorn, H., Pelkie, C.: A wave glider approach to fisheries acoustics: Transforming how we monitor the nation’s commercial fisheries in the 21st century. Oceanography 27. https://doi.org/10.5670/oceanog.2014.82 (2014)
Perry, M.J., Rudnick, D.L.: Observing the ocean with autonomous and lagrangian platforms and sensors: The role of alps in sustained ocean observing systems. Oceanography 16(4), 31–36 (2003). n/a
Dawson, C.: Arctic shipping volume rises as ice melts. http://www.wsj.com/articles/arctic-cargo-shipping-volume-is-rising-as-ice-melts-1414612143 (2014), [Online; Accessed 15 May 2016]
Trishchenko, A.P., Garand, L.: Continuous coverage of the arctic: Two-satellite highly elliptical orbit (heo) system is better than two dozen of leo polar orbiters, http://www.goes-r.gov/downloads/2012-Science-Week/posters/tues/13_Trishchenko.pdf
Imagenex Technologies: Overview of the imagenex deltat sonar real time operation in an autonomous underwater vehicle (auv) application (2006)
Johansen, T.A., Zolich, A., Hansen, T., Sørensen, A.J.: Unmanned aerial vehicle as communication relay for autonomous underwater vehicle - field tests. In: IEEE Globecom Workshop - Wireless Networking and Control for Unmanned Autonomous Vehicles. Austin (2014)
Zolich, A., Johansen, T.A., Cisek, K., Klausen, K.: Unmanned aerial system architecture for maritime missions. Design and hardware description. In: 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS). pp. 342–350 (2015)
Maritime, K.: Reshaping underwater operations – live footage of groundbreaking robotic subsea ‘snake’ released, https://www.km.kongsberg.com/ks/web/nokbg0238.nsf/AllWeb/81FA0DE33AE2C0FAC12580CA0037AD9C?OpenDocument
Sousa, L.L., López-Castejón, F., Gilabert, J., Relvas, P., Couto, A., Queiroz, N., Caldas, R., Dias, P.S., Dias, H., Faria, M., Ferreira, F., Ferreira, A.S., Fortuna, J., Gomes, R.J., Loureiro, B., Martins, R., Madureira, L., Neiva, J., Oliveira, M., Pereira, J., Pinto, J., Py, F., Queirós, H., Silva, D., Sujit, P., Zolich, A., Johansen, T.A., Sousa, J., Rajan, K.: Integrated monitoring of mola mola behaviour in space and time. PLoS ONE (2016)
Pinto, J., Dias, P.S., Martins, R., Fortuna, J., Marques, E., Sousa, J.: The lsts toolchain for networked vehicle systems. In: OCEANS - Bergen, 2013 MTS/IEEE. pp. 1–9 (June 2013)
Ocean, G.: Ocean tracking network global metadata and data atlas. http://members.oceantrack.org/data/discovery/GLOBAL.htm (2016), [Online; Accessed 13 July 2016]
Argo: How argo floats work, http://www.argo.ucsd.edu/How_Argo_floats.html
M., D.: Methods for the deployment and maintenance of an acoustic tag tracking array: An example from california’s channel islands. Mar. Technol. Soc. J. 39, 74–80 (2005)
Beauchamp, N.: Return of the intrepid wave glider. http://oceantrackingnetwork.org/return-of-the-intrepid-wave-glider/ (2014), [Online; Accessed 13 July 2016]
Zolich, A., Skøien, K.R., Alfredsen, J.A., Johansen, T.A.: A communication bridge between underwater sensors and unmanned vehicles using a surface wireless sensor network – design and validation. In: IEEE Oceans Shanghai (2016)
Berge, J., Geoffroy, M., Johnsen, G., Cottier, F., Bluhm, B., Vogedes, D.: Ice-tethered observational platforms in the arctic ocean pack ice. IFAC-PapersOnLine 49(23), 494–499 (2016) http://www.sciencedirect.com/science/article/pii/S2405896316320742
Fossen, T.I.: Project 5 — autonomous aerial systems for marine monitoring and data collection. http://www.ntnu.edu/amos/project-5 (2016), [Online; Accessed 13 July 2016]
Ltd., H.A.V.: Access to the arctic: Time to try something different - press release (2013), https://www.hybridairvehicles.com/downloads/Airlander-220.pdf
DNV-GL: The revolt – a new inspirational ship concept (2015) https://www.dnvgl.com/technology-innovation/revolt/index.html
Rolls-Royce Marine: Rolls-royce drone ships challenge $375 billion industry: Freight (2014) http://www.bloomberg.com/news/articles/2014-02-25/rolls-royce-drone-ships-challenge-375-billion-industry-freight
Rolls-Royce: Rolls-royce unveils a vision of the future of remote and autonomous shipping. http://www.rolls-royce.com/media/press-releases/yr-2016/pr-12-04-2016-rr-unveils-a-vision-of-future-of-remote-and-autonomus-shipping.aspx (2016), [Online; Accessed 13 July 2016]
Rødseth, Ø.J., Kvamstad, B., Porathe, T., Burmeister, H.C.: Communication architecture for an unmanned merchant ship. In: IEEE Oceans. Bergen (2013)
Rolls-Royce Marine: Rolls-royce unveils a vision of the future of remote and autonomous shipping (2016) http://www.rolls-royce.com/media/press-releases/yr-2016/pr-12-04-2016-rr-unveils-a-vision-of-future-of-remote-and-autonomus-shipping.aspx
World, Y.B.: Finferries’ 65 metre double ended ferry, the stella will be used to test how crewless ships function in a real environment (2016) http://www.ybw.com/pictures/rolls-royce-crewless-smart-boats-18760/attachment/26248512775_8e66afa2b0_o
Elkins, L., Sellers, D., Monach, W.R.: The autonomous maritime navigation (amn) project: Field tests, autonomous and cooperative behaviors, data fusion, sensors and vehicles. J. Field Robot. 27, 790–818 (2010)
Wolf, M.T., Assad, C., Kuwata, Y., Howard, A., Aghazarian, H., Zhu, D., Lu, T., Trebl-Ollennu, A., Huntsberger, T.: 360-degree visual detection and target tracking on an autonomous surface vehicle. J. Field Robot. 27, 819–830 (2010)
Huntsberger, T., Aghazarian, H., Howard, A., Trotz, D.C.: Stereo vision-based navigation for autonomous surface vessels. J. Field Robot. 28, 3–18 (2011)
Kuwata, Y., Wolf, M.T., Zarzhitsky, D., Huntsberger, T.L.: Safe maritime autonomous navigation with COLREGS, using velocity obstacles. IEEE J. Oceanic Eng. 39, 110–119 (2014)
COLREGs - convention on the international regulations for preventing collisions at sea, international maritime organization (IMO) (1972)
Stensvold, T.: Rolls-royce bygger fjernstyringssenter i Ålesund (2017), https://www.tu.no/artikler/rolls-royce-bygger-fjernstyringssenter-i-alesund/377772
Turku, U.: Aawa — advanced autonomous waterborne applications initiative. https://www.utu.fi/en/units/law/research/research-projects/Pages/aawa.aspx (2015), [Online; Accessed 13 July 2016]
Hannu, K.: Rolls-royce and vtt unveil a vision of ship intelligence with futuristic ox bridge concept. http://www.vttresearch.com/media/news/rolls-royce-and-vtt-unveil-a-vision-of-ship-intelligence-with-futuristic-ox-bridge-concept (2014), [Online; Accessed 13 July 2016]
MUNIN Consortium: Research in maritime autonomous systems project results and technology potentials. http://www.unmanned-ship.org/munin/wp-content/uploads/2016/02/MUNIN-final-brochure.pdf (2016), [Online; Accessed 13 July 2016]
Johansen, T.A., Perez, T.: Unmanned aerial surveillance system for hazard collision avoidance in autonomous shipping. In: International Conference on Unmanned Aircraft Systems, Washington DC (2016)
Kongsberg: Collaboration on swimming robots for subsea maintenance. https://www.km.kongsberg.com/ks/web/nokbg0238.nsf/AllWeb/2800489E780D5865C1257F99002DCDA6?OpenDocument(2016), [Online; Accessed 13 July 2016]
Guerra, A.G., Francisco, F., Villate, J., Agelet, F.A., Bertolami, O., Rajan, K.: On small satellites for oceanography: A survey. Acta Astronautica 127, 404–423 (2016) http://www.sciencedirect.com/science/article/pii/S0094576515303441
Osse, T.J., Meinig, C., Stalin, S., Milburn, H.: The prawler, a vertical profiler powered by wave energy. In: OCEANS 2015 - MTS/IEEE Washington. pp. 1–8 (2015)
Domeier, M.L.: Methods for the deployment and maintenance of an acoustic tag tracking array: An example from california’s channel islands. Marine Technol Soc J 39(1), 74–80 (2005). https://doi.org/10.4031/002533205787521668
Dunbabin, M., Grinham, A.: Experimental evaluation of an autonomous surface vehicle for water quality and greenhouse gas emission monitoring. In: 2010 IEEE International Conference on Robotics and Automation. pp. 5268–5274 (2010)
Caccia, M., Bibuli, M., Bono, R., Bruzzone, G.: Basic navigation, guidance and control of an unmanned surface vehicle. Auton. Robot. 25, 349–365 (2008)
Kimball, P., Bailey, J., Das, S., Geyer, R., Harrison, T., Kunz, C., Manganini, K., Mankoff, K., Samuelson, K., Sayre-McCord, T., Straneo, F., Traykovski, P., Singh, H.: The whoi jetyak: An autonomous surface vehicle for oceanographic research in shallow or dangerous waters. In: 2014 IEEE/OES Autonomous Underwater Vehicles (AUV). pp. 1–7 (2014)
Barbatei, R., Skavhaug, A., Johansen, T.A.: Acquisition and relaying of data from a floating wireless sensor node using an unmanned aerial vehicle. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 677–686 (2015)
Palmer, J., Yuen, N., Ore, J.P., Detweiler, C., Basha, E.: On air-to-water radio communication between uavs and water sensor networks. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5311–5317 (2015)
Hovstein, V.E., Sægrov, A., Johansen, T.A.: Experiences with coastal and maritime UAS BLOS operation with phased-array antenna digital payload data link. In: Int. Conf. Unmanned Aerial Systems (ICUAS). Orlando (2014)
Sherman, J., Davis, R.E., Owens, W.B., Valdes, J.: The autonomous underwater glider “spray”. IEEE J. Ocean. Eng. 26(4), 437–446 (2001)
O’Reilly, T.C., Kieft, B., Chaffey, M.: Communications relay and autonomous tracking applications for wave glider. In: OCEANS 2015 - Genova (2015)
Gizmag: Darpa readies unmanned actuv sub hunter for sea trials (2016), http://www.gizmag.com/darpa-actuv-unmanned-sub-hunter/41842/
Yuh, J.: Design and control of autonomous underwater robots: A survey. Auton. Robot. 8, 7–24 (2000)
Zheng, H., Negenborn, R.R., Lodewijks, G.: Survey of approaches for improving the intelligence of marine surface vehicles. In: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013). pp. 1217–1223 (2013)
Fernandes, P.G., Stevenson, P., Brierley, A.S., Armstrong, F., Simmonds, E.: Autonomous underwater vehicles: future platforms for fisheries acoustics. ICES J Mar Sci 60(3), 684 (2003). https://doi.org/10.1016/S1054-3139(03)00038-9
Cui, J.H., Kong, J., Gerla, M., Zhou, S.: The challenges of building mobile underwater wireless networks for aquatic applications. IEEE Netw 20(3), 12–18 (2006)
Rajan, K., Py, F.: T-rex: Partitioned inference for auv mission control. In: Further Advances in Unmanned Marine Vehicles. pp. 171–199. Control, Robotics & Sensors, Institution of Engineering and Technology (2012), http://digital-library.theiet.org/content/books/10.1049/pbce077e_ch9
Vasilescu, I., Kotay, K., Rus, D., Dunbabin, M., Corke, P.: Data collection, storage, and retrieval with an underwater sensor network. In: Proceedings of the International Conference on Embedded Networked Sensor Systems (ACM) SenSys 2005 (2005)
Desa, E., Maurya, P.K., Pereira, A., Pascoal, A.M., Prabhudesai, R.G., Mascarenhas, A., Desa, E., Madhan, R., Matondkar, S.G.P., Navelkar, G., Prabhudesai, S., Afzulpurkar, S.: A small autonomous surface vehicle for ocean color remote sensing. IEEE J. Ocean. Eng. 32(2), 353–364 (2007)
Manley, J.E.: Unmanned surface vehicles, 15 years of development. In: IEEE/MTS Oceans. Quebec City (2008)
Offshore-technology.com: Using autonomous vehicles to track ice in iceberg alley (2015), http://www.offshore-technology.com/
Hine, R., Willcox, S., Hine, G., Richardson, T.: The wave glider: A wave-powered autonomous marine vehicle. In: OCEANS 2009, pp. 1–6 (2009)
Global, A.: Asv global world leading marine autonomy (2017), http://asvglobal.com/
Norgren, P., Ludvigsen, M., Ingebretsen, T., Hovstein, V.E.: Tracking and remote monitoring of an autonomous underwater vehicle using an unmanned surface vehicle in the trondheim fjord. In: OCEANS 2015 - MTS/IEEE Washington. pp. 1–6 (2015)
Djapic, V., Na: Collaborative autonomous vehicle use in mine countermeasures. Sea Technology Magazine (2010) http://www.sea-technology.com/features/2010/1110/autonomous_vehicle.php
Zhang, J., Xiong, J., Zhang, G., Gu, F., He, Y.: Flooding disaster oriented usv uav system development demonstration. In: OCEANS 2016 - Shanghai, pp. 1–4 (2016)
Mendonça, R., Marques, M.M., Marques, F., Lourenço, A., Pinto, E., Santana, P., Coito, F., Lobo, V., Barata, J.: A cooperative multi-robot team for the surveillance of shipwreck survivors at sea. In: OCEANS 2016 MTS/IEEE Monterey, pp. 1–6 (2016)
Fan, Y., Ma, J., Wang, G., Li, T.: Design of a heterogeneous marsupial robotic system composed of an usv and an uav. In: 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI), pp. 395–399 (2016)
Warwick, G.: Hybrid vtol uavs – back to the future. http://aviationweek.com/blog/hybrid-vtol-uavs-back-future (2014), [Online; Accessed 13 July 2016]
Sarda, E.I., Dhanak, M.R.: A usv-based automated launch and recovery system for auvs. IEEE J. Ocean. Eng. 42(1), 37–55 (2017)
de Sousa, J.B., McGuillivary, P., Vicente, J., Bento, M.N., Morgado, J.A.P., Matos, M.M., Bencatel, R.A.G., de Oliveira, P.M.: Handbook of Unmanned Aerial Vehicles, chap. Unmanned Aircraft Systems for Maritime Operations, pp. 2787–2811. Springer, Netherlands (2015)
Usbeck, K., Gillen, M., Loyall, J., Gronosky, A., Sterling, J., Kohler, R., Newkirk, R., Canestrare, D.: Data ferrying to the tactical edge: A field experiment in exchanging mission plans and intelligence in austere environments. In: 2014 IEEE Military Communications Conference, pp. 1311–1317 (2014)
Chamberlain, L., Scherer, S.: Robocopters to the rescue. IEEE Spectr. 50(10), 28–33 (2013)
Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man, Cybern.- Part A: Syst. Humans 30(3), 286–297 (2000)
Register, L.: Shipright design and constructin, additional design procedures: Lr code for unmanned marine systems. Tech. rep., Lloyd’s Register Group Limited (2 2017), http://www.lr.org/en/services/unmanned-code.aspx
Council, N.R.: Review of ONR’s Uninhabited Combat Air Vehicles Program. National Academies Press, Washington DC (2000)
International, S.: U.S. department of transportation’s new policy on automated vehicles adopts sae international’s levels of automation for defining driving automation in on-road motor vehicles (1 2014) https://www.sae.org/news/3544/
Zolich, A., Johansen, T.A., Sægrov, A., Vågsholm, E., Hovstein, V.: Coordinated maritime missions of unmanned vehicles - network architecture and performance analysis. In: IEEE ICC, Mobile and Wireless Networking. Paris (2017)
Grancharova, A., Grøtli, E.I., Ho, D.T., Johansen, T.A.: UAVs, trajectory planning by distributed MPC under radio communication path loss constraints. J. Intell. Robot. Syst. 79, 115–134 (2015)
Grancharova, A., Grøtli, E.I., Johansen, T.A.: Rotary-wing uavs path planning by distributed linear MPC with reconfigurable communication network topologies. In: IFAC Workshop on Distributed Estimation and Control in Networked Systems. Koblenz (2013)
Ho, D.T., Grøtli, E.I., Sujit, P.B., Johansen, T.A., Sousa, J.: Optimization of wireless sensor network and UAV, data acquisition. J. Intell. Robot. Syst. 78, 159–179 (2015)
McGillivary, P., de Sousa, J.B., Martins, R., Rajan, K., Leroy, F.: Integrating autonomous underwater vessels, surface vessels and aircraft as persistent surveillance components of ocean observing studies. In: 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), pp. 1–5 (2012)
Frew, E.W., Brown, T.X., Dixon, C., Henkel, D.: Establishment and maintenance of a delay tolerant network through decentralized mobility control. In: Proc. of the IEEE International Conference on Networking, Sensing and Control, pp. 584–589 (2006)
Grøtli, E.I., Johansen, T.A.: Motion- and communication-planning of unmanned aerial vehicles in delay tolerant network using mixed-integer. Linear Program. Model. Identif. Control 37(2), 77–97 (2016)
Razif, M.A.M., Mokji, M., Zabidi, M.M.A.: Low complexity maritime surveillance video using background subtraction on h.264. In: 2015 International Symposium on Technology Management and Emerging Technologies (ISTMET), pp. 364–368 (2015)
Leira, F., Johansen, T.A., Fossen, T.I.: Automatic detection, classification and tracking of objects in the ocean surface from uavs using a thermal camera. In: IEEE Aerospace Conference, Big Sky (2015)
Curtin, T.B., Bellingham, J.G., Catipovic, J., Webb, D.: Autonomous oceanographic sampling networks. Oceanography 6, 86–94 (1993)
Leonard, N.E., Paley, D.A., Davis, R.E., Fratantoni, D.M., Lekien, F., Zhang, F.: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in monterey bay. J. Field Robot. 27, 718–740 (2010)
Loy, M., Karingattil, R., Williams, L.: Ism-band and short range device regulatory compliance overview. http://www.ti.com/lit/an/swra048/swra048.pdf (2005), [Online; Accessed 13 July 2016]
Torrieri, D.: Principles of Spread-Spectrum Communication Systems, 2nd edn. Springer (2011)
Bekkadal, F.: Future maritime communications technologies. In: OCEANS 2009 - EUROPE, pp. 1–6 (2009)
Ge, Y., Kong, P.Y., Tham, C.K., Pathmasuntharam, J.S.: Connectivity and route analysis for a maritime communication network. In: 2007 6th International Conference on Information, Communications Signal Processing, pp. 1–5 (2007)
Friderikos, V., Papadaki, K., Dohler, M., Gkelias, A., Agvhami, H.: Linked waters. Commun. Eng. 3(2), 24–27 (2005)
Kim, Y., Kim, J., Wang, Y., Chang, K., Park, J.W., Lim, Y.: Application scenarios of nautical ad-hoc network for maritime communications. In: OCEANS 2009, pp. 1–4 (2009)
Sozer, E.M., Stojanovic, M., Proakis, J.G.: Underwater acoustic networks. IEEE J. Ocean. Eng. 25 (1), 72–83 (2000)
Kaushal, H., Kaddoum, G.: Underwater optical wireless communication. IEEE Access 4, 1518–1547 (2016)
Mosca, F., Matte, G., Mignard, V., Rioblanc, M.: Low-frequency source for very long-range underwater communication. In: 2013 OCEANS - San Diego, pp. 1–5 (2013)
Stojanovic, M.: Low complexity ofdm detector for underwater acoustic channels. In: OCEANS 2006, pp. 1–6 (2006)
Chitre, M., Shahabudeen, S., Freitag, L., Stojanovic, M.: Recent advances in underwater acoustic communications & networking. In: OCEANS 2008. vol. 2008-Supplement, pp. 1–10 (2008)
Stojanovic, M., Catipovic, J., Proakis, J.G.: Adaptive multichannel combining and equalization for underwater acoustic communications. J. Acous. Soc. Amer. 94(3), 1621–1631 (1993). https://doi.org/10.1121/1.408135
Murphy, C., Walls, J.M., Schneider, T., Eustice, R.M., Stojanovic, M., Singh, H.: Capture: A communications architecture for progressive transmission via underwater relays with eavesdropping. IEEE J. Ocean. Eng. 39(1), 120–130 (2014)
Wang, Y., Liu, Y., Guo, Z.: Three-dimensional ocean sensor networks: A survey. J. Ocean Univ. China 11(4), 436–450 (2012)
Pinto, J., Calado, P., Braga, J., Dias, P., Martins, R., Marques, E., Sousa, J.B.: Implementation of a control architecture for networked vehicle systems. In: IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles (NGCUV) (2012)
Mohsin, R.J., Woods, J., Shawkat, M.Q.: Density and mobility impact on manet routing protocols in a maritime environment. In: Science and Information Conference (SAI), 2015, pp. 1046–1051 (2015)
Xu, G., Shen, W., Wang, X.: Marine environment monitoring using wireless sensor networks: A systematic review. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 13–18 (2014)
Wehs, T., Janssen, M., Koch, C., von Cölln, G.: System architecture for data communication and localization under harsh environmental conditions in maritime automation. In: IEEE 10th International Conference on Industrial Informatics, pp. 1252–1257 (2012)
Sanctis, M.D., Cianca, E., Araniti, G., Bisio, I., Prasad, R.: Satellite communications supporting internet of remote things. IEEE Int. Things J. 3(1), 113–123 (2016)
Martins, R.: Disruption/delay tolerant networking with low-bandwidth underwater acoustic modems. In: 2010 IEEE/OES Autonomous Underwater Vehicles (2010)
Lin, H.M., Ge, Y., Pang, A.C., Pathmasuntharam, J.: Performance study on delay tolerant networks in martitime communication environments. In: IEEE OCEANS (2010)
P, S.S., Kumar, S.S.: Sea water quality monitoring using smart sensor network. In: 2015 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 804–812 (2015)
Lambrinos, L., Djouvas, C., Chrysostomou, C.: Applying delay tolerant networking routing algorithms in maritime communications. In: 2013 IEEE 14th International Symposium and Workshops on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) (2013)
of Technology, M.I.: Moos-ivp home page (2017), http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php
Deering, D.S.E.: Internet Protocol, Version 6 (IPv6) Specification. RFC 2460 (2013) https://rfc-editor.org/rfc/rfc2460.txt
Luo, H., Wu, K., Guo, Z., Gu, L., Ni, L.M.: Ship detection with wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 23(7), 1336–1343 (2012)
Ho, D.T., Grøtli, E.I., Sujit, P.B., Johansen, T.A., Sousa, J.B.: Optimization of wireless sensor network and uav data acquisition. J. Intell. Robot. Syst. 78(1), 159–179 (2015). https://doi.org/10.1007/s10846-015-0175-5
Palattella, M.R., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L.A., Boggia, G., Dohler, M.: Standardized protocol stack for the internet of (important) things. IEEE Commun. Surv. Tutor. 15 (3), 1389–1406 (2013)
Palma, D., Curado, M.: Resource Management in Mobile Computing Environments, chap. Scalable Routing Mechanisms for Mobile Ad Hoc Networks, pp. 65–114. Springer International Publishing, Cham (2014)
Kim, Y., Kim, J., Wang, Y., Chang, K., Park, J.W., Lim, Y.: Application scenarios of nautical ad-hoc network for maritime communications. In: OCEANS 2009 (2009)
Narten, D.T., Jinmei, T., Thomson, D.S.: IPv6 Stateless Address Autoconfiguration. RFC 4862 (2015) https://rfc-editor.org/rfc/rfc4862.txt
Kidston, D., Kunz, T.: Challenges and opportunities in managing maritime networks. IEEE Commun. Mag. 46(10), 162–168 (2008)
Costanzo, S., Galluccio, L., Morabito, G., Palazzo, S.: Software Defined Wireless Networks: Unbridling SDNs. In: 2012 European Workshop on Software Defined Networking (EWSDN), pp. 1–6 (2012)
Galluccio, L., Milardo, S., Morabito, G., Palazzo, S.: Sdn-wise: Design, prototyping and experimentation of a stateful sdn solution for wireless sensor networks. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 513–521 (2015)
Acknowledgements
This work was partially funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 699924.
The Research Council of Norway is acknowledged as the main sponsor of NTNU AMOS (Centre for Autonomous Marine Operations and Systems), grant number 223254, and the project Hybrid Operations in Maritime Environments (HOME) funded by the MAROFF programme, grant number 269480.
The work has been supported by the light house project CAMOS of the Faculty of Information Technology and Electrical Engineering, NTNU.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Zolich, A., Palma, D., Kansanen, K. et al. Survey on Communication and Networks for Autonomous Marine Systems. J Intell Robot Syst 95, 789–813 (2019). https://doi.org/10.1007/s10846-018-0833-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-018-0833-5