Skip to main content
Log in

Information-driven Persistent Sensing of a Non-cooperative Mobile Target Using UAVs

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper addresses the persistent sensing problem of moving ground targets of interest using a group of fixed wing UAVs. Especially, we aim to overcome the challenge of physical obscuration in complex mission environments. To this end, the persistent sensing problem is formulated under an optimal control framework, i.e. deploying and managing UAVs in a way maximising the visibility to the non-cooperative target.The main issue with such a persistent sensing problem is that it generally requires the knowledge of future target positions, which is uncertain. To mitigate this issue, a probabilistic map of the future target position is widely utilised. However, most of the probabilistic models use only limited information of the target. This paper proposes an innovative framework that can make the best use of all available information, not only limited information. For the validation of the feasibility, the performance of the proposed framework is tested in a Manhattan-type controlled urban environment. All the simulation tests use the same framework proposed, but utilise different level of information. The simulation results confirm that the performance of the persistent sensing significantly improves, up to 30%, when incorporating all available target information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kingston, D., Beard, R.W., Holt, R.S.: Decentralized perimeter surveillance using a team of UAVs. IEEE Trans. Robot. 24(6), 1394–1404 (2008)

    Article  Google Scholar 

  2. Bein, D., Bein, W., Karki, A., Madan, B.B.: Optimizing border patrol operations using unmanned aerial vehicles. In: 2015 12th International Conference on Information Technology - New Generations, pp. 479–484. Las Vegas, NV. https://doi.org/10.1109/ITNG.2015.83 (2015)

  3. Minaeian, S., Liu, J., Son, Y.-J.: Vision-based target detection and localization via a team of cooperative uav and ugvs. IEEE Trans. Syst. Man Cybern. Syst. 46(7), 1005–1016 (2016)

    Article  Google Scholar 

  4. Pitre, R.R., Li, X.R., Delbalzo, R.: UAV route planning for joint search and track mission - an informative-value approach. IEEE Trans. Aerosp. Electron. Syst. 48(3), 2551–2565 (2012)

    Article  Google Scholar 

  5. Lim, B.H., Kim, J.W., Ha, S.W., Moon, Y.H.: Development of software platform for monitoring of multiple small UAVs. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1–5. Sacramento, CA. https://doi.org/10.1109/DASC.2016.7778109 (2016)

  6. Li, P., Duan, H.: A potential game approach to multiple uav cooperative search and surveillance. Aerosp. Sci. Technol. 68, 403–415 (2017)

    Article  Google Scholar 

  7. Puri, A.: A survey of unmanned aerial vehicles (UAV) for traffic surveillance. Department of Computer Science and Engineering, University of South Florida (2005)

  8. Carapezza, E.M., Law, D.B.: Sensors, c3i, information, and training technologies for law enforcement. In enabling technologies for law enforcement and security. 1-6 November 1998, Boston, MA, United States. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3577 (1999)

  9. Belbachir, A., Escareno, J.-A.: Autonomous decisional high-level planning for uavs-based forest-fire localization. In: Proceeding ICINCO 2016 Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics, vol. 1, pp. 153–159 (2016)

  10. Ericsson, E.: Driving pattern in urban areas - descriptive analysis and initial prediction model. Technical report, Lunds universitet, instutionen för teknik och samhälle, trafik och väg, 2000 In Bulletin 185 / 3000 Bulletin 185 ISSN 1404-272X, http://lup.lub.lu.se/record/627123 (2000)

  11. Lethaus, F., Baumann, M.R.K., Köster, F., Lemmer, K.: Using Pattern Recognition to Predict Driver Intent, pp 140–149. Springer, Berlin (2011)

    Google Scholar 

  12. Husen, M.N., Lee, S., Khan, M.Q.: Syntactic pattern recognition of car driving behavior detection. In: Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication, IMCOM ’17, pp 77:1–77:6. ACM, New York (2017)

  13. Kim, J., Kim, Y.: Moving ground target tracking in dense obstacle areas using UAVs. In: IFAC Proceedings Volumes, vol. 41, no. 2, pp. 8552–8557, ISSN: 1474-6670, ISBN: 9783902661005. https://doi.org/10.3182/20080706-5-KR-1001.01446, (http://www.sciencedirect.com/science/article/pii/S1474667016403253) (2008)

    Article  Google Scholar 

  14. Chen, H.: UAV path planning with tangent-plus-lyapunov vector field guidance and obstacle avoidance. IEEE Trans. Aerosp. Electron. Syst. 49(2), 840–856 (2013)

    Article  Google Scholar 

  15. Lim, S., Kim, Y., Lee, D., Bang, H.: Standoff target tracking using a vector field for multiple unmanned aircrafts. J. Intell. Robot. Syst. 69(1–4), 347–360 (2013)

    Article  Google Scholar 

  16. Jung, W., Lim, S., Lee, D., Bang, H.: Unmanned aircraft vector field path following with arrival angle control. J. Intell. Robot. Syst. Theory Appl. 84(1–4), 311–325 (2016)

    Article  Google Scholar 

  17. Jiang, W., Wang, D., Wang, Y., Ali, Z.A.: Uav rendezvous based on time-varying vector fields. Electron. Lett. 53(10), 653–655 (2017)

    Article  Google Scholar 

  18. Shames, I., Dasgupta, S., Fidan, B., Anderson, B.D.O.: Circumnavigation using distance measurements under slow drift. IEEE Trans. Autom. Control 57(4), 889–903 (2012)

    Article  MathSciNet  Google Scholar 

  19. Deghat, M., Shames, I., Anderson, B.D.O, Yu, C.: Target localization and circumnavigation using bearing measurements in 2D. In: 49th IEEE Conference on Decision and Control (CDC), pp. 334–339. Atlanta, GA. https://doi.org/10.1109/CDC.2010.5717795, URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5717795&isnumber=5716927 (2010)

  20. Livermore, R.A.: Optimal UAV path planning for tracking a moving ground vehicle with a gimbaled camera. Master’s thesis, US Air Force Institute of Technology (USAF), http://www.dtic.mil/get-tr-doc/pdf?AD=ADA598975 (2014)

  21. Rafi, F., Khan, S., Shafiq, K., Shah, M.: Autonomous target following by unmanned aerial vehicles. In: Proceedings SPIE 6230 Unmanned Systems Technology VIII, pp. 623010–623010. International Society for Optics and Photonics (2006)

  22. Wise, R.A., Rysdyk, R.T.: UAV coordination for autonomous target tracking. In: Proceedings AIAA Guidance, Navigation and Control Conference, Keystone, Colorado USA, 21–24 August 2006. https://doi.org/10.2514/6.2006-6453 (2006)

  23. Yoon, S., Park, S., Kim, Y.: Circular motion guidance law for coordinated standoff tracking of a moving target. IEEE Trans. Aerosp. Electron. Syst. 49(4), 2440–2462 (2013)

    Article  Google Scholar 

  24. Kim, S., Oh, H., Tsourdos, A.: Nonlinear model predictive coordinated standoff tracking of moving ground vehicle. J. Guid. Control Dyn. 36(2), 557–566 (2013)

    Article  Google Scholar 

  25. Kingston, D., Beard, R.: UAV spaly state configuration for moving targets in wind. Lect. Notes Control Inf. 369, 109–128 (2007)

    MATH  Google Scholar 

  26. Summers, T.H., Akella, M.R., Mears, M.J.: Coordinated standoff tracking of moving targets Control laws and information architectures. J. Guid. Control Dyn. 32(1), 56–69 (2009)

    Article  Google Scholar 

  27. Frew, E.W.: Sensitivity of cooperative target geolocalization to orbit coordination. J. Guid. Control Dyn. 31 (4), 1028–1040 (2008)

    Article  Google Scholar 

  28. Oh, H., Kim, S., Tsourdos, A., White, B.A.: Road-map assisted standoff tracking of moving ground vehicle using nonlinear model predictive control. In: 2012 American Control Conference (ACC), pp. 4263–4268. Montreal, QC. https://doi.org/10.1109/ACC.2012.6314873 (2012)

  29. Zhao, C., Zhu, M., Liang, H., Wu, Z.: The sustainable tracking strategy of moving target by uav in an uncertain environment. In: 2016 35th Chinese Control Conference (CCC), pp. 5641–5647. Chengdu. https://doi.org/10.1109/ChiCC.2016.7554236 (2016)

  30. He, Z., Xu, J.-X.: Moving target tracking by uavs in an urban area. In: 2013 10th IEEE International Conference on In Control and Automation (ICCA), pp. 1933–1938, Hangzhou. https://doi.org/10.1109/ICCA.2013.6564973 (2013)

  31. Yao, P., Wang, H., Su, Z.: Real-time path planning of unmanned aerial vehicle for target tracking and obstacle avoidance in complex dynamic environment. Aerosp. Sci. Technol. 47, 269–279 (2015)

    Article  Google Scholar 

  32. Zhang, M., Liu, H.H.T.: Persistent tracking using unmanned aerial vehicle: A game theory method. In AIAA Guidance, Navigation, and Control Conference, 8–11. August 2011, Portland, Oregon. https://doi.org/10.2514/6.2011-6295 (2011)

  33. Wang, Y., Cao, Y.: Coordinated target tracking via a hybrid optimization approach. Sensors (Switzerland), 17(3), 472 (2017)

    Article  Google Scholar 

  34. Tang, Z., Ozguner, U.: Motion planning for multitarget surveillance with mobile sensor agents. IEEE Trans. Robot. 21(5), 898–908 (2005)

    Article  Google Scholar 

  35. Xun, W., Wei-Wei, K., Dai-Bing, Z., Hua-Yong, Z.: Segment guidance and control on non-cooperative ground target tracking for unmanned aerial vehicles. In: Proceedings of the 31st Chinese Control Conference, pp. 4868–4872. Hefei. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6390784&isnumber=6389889 (2012)

  36. Ramasamy, M., Ghose, D.: A heuristic learning algorithm for preferential area surveillance by unmanned aerial vehicles. J. Intell. Robot. Syst. Theory Appl, 1–27. https://doi.org/10.1007/s10846-017-0498-5 (2017)

    Article  Google Scholar 

  37. Redding, J., Geramifard, A., Undurti, A., Choi, H.-L., How, J.P.: An intelligent cooperative control architecture. In: Proceedings of the 2010 American Control Conference, pp. 57–62. Baltimore, MD. https://doi.org/10.1109/ACC.2010.5530666 (2010)

  38. Grocholsky, B., Keller, J., Kumar, V., Pappas, G.: Cooperative air and ground surveillance. Robot Autom Mag IEEE 13(3), 16–25 (2006)

    Article  Google Scholar 

  39. Shaferman, V., Shima, T.: Unmanned aerial vehicles cooperative tracking of moving ground target in urban environments. J Guid Control Dyn 31(5), 1360–1371 (2008)

    Article  Google Scholar 

  40. Zhang, K., Gao, X., Chen, D.: Three dimensional trajectory tracking for unmanned aerial vehicles in time-varying winds pages 735–739 (2016)

  41. Tang, Z., Özgüner, Ü.: Sensor fusion for target track maintenance with multiple UAVS based on Bayesian filtering method and hospitability map. In: 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), vol. 1, pp. 19–24. Maui, HI, USA. https://doi.org/10.1109/CDC.2003.1272529 (2003)

  42. Capitan, J., Merino, L., Ollero, A.: Decentralized cooperation of multiple uas for multi-target surveillance under uncertainties. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1196-1202. Orlando, FL. https://doi.org/10.1109/ICUAS.2014.6842375 (2014)

  43. Capitan, J., Merino, L., Ollero, A.: Cooperative decision-making under uncertainties for multi-target surveillance with multiples uavs. J. Intell. Robot. Syst. 84(1), 371–386 (2016)

    Article  Google Scholar 

  44. Yu, H., Beard, R.W., Argyle, M., Chamberlain, C.: Probabilistic path planning for cooperative target tracking using aerial and ground vehicles. In: Proceedings of the 2011 American Control Conference, pp. 4673–4678. San Francisco, CA. https://doi.org/10.1109/ACC.2011.5990839 (2011)

  45. Cook, K., Bryan, E., Huili, Y., He, B., Seppi, K., Beard, R.: Intelligent cooperative control for urban tracking. J. Intell. Robot. Syst. 74(1-2), 251–267 (2014)

    Article  Google Scholar 

  46. Bourgault, F., Furukawa, T., Durrant-Whyte, H.E.: Coordinated decentralized search for a lost target in a Bayesian world. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), vol. 1, pp. 48–53. Las Vegas, NV, USA. https://doi.org/10.1109/IROS.2003.1250604 (2003)

  47. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  48. Hwang, C.-L., Masud, A.S.M.: Multiple Objective Decision Making - Methods and Applications. Springer, Berlin (1979)

    Book  Google Scholar 

  49. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  Google Scholar 

  50. Ke, Z., Roumeliotis, S.I.: Multirobot active target tracking with combinations of relative observations. IEEE Trans. Robot. 27(4), 678–695 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo-Sang Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, HS., Garcia, A.J. & Alvarez, S. Information-driven Persistent Sensing of a Non-cooperative Mobile Target Using UAVs. J Intell Robot Syst 92, 629–643 (2018). https://doi.org/10.1007/s10846-017-0719-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0719-y

Keywords

Navigation