Skip to main content
Log in

Underactuated Flexible Aerial Manipulators: a New Framework for Optimal Trajectory Planning Under Constraints Induced by Complex Dynamics

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The aerial manipulators (AMs) are a new class of unmanned aerial systems (UASs) that are created in response to the ever-increasing demand for autonomous object transportation and manipulation. Because of power supply restrictions, the load carrying capacity is limited and therefore it is necessary to reduce the overall weight of these UASs. The past works in the field of AMs consider the multi-rotor unmanned aerial vehicles (UAVs) as the base and manipulators with rigid links as the interactive elements with the environment which are bulky and heavy. To overcome the issue, this paper introduces the AMs endowed with flexible manipulators, their dynamic modeling, a new method for trajectory planning and control algorithm such that the unfavorable effects of using flexible elements like vibrations are minimized. Due to lack of kinematic constraints and the presence of flexibility conditions, conventional methods of trajectory planning for ground wheeled-mobile manipulators (GWMMs) such as extended and augmented Jacobian matrix cannot be applied to AMs. The addition of flexibility to the manipulator increases underactuation degrees (UADs), the complexity of trajectory planning and control synthesis. Considering large deformation assumption for flexible links, the dynamic equations and their induced nonholonomic constraints are derived applying Lagrangian formulation. Then, these constraints with that part of equations of motion corresponding to the links flexibility are solved simultaneously in the context of an optimization algorithm resulting in optimized trajectories. Through simulation results, the proposed method of trajectory planning and vibration control of underactuated flexible AMs has been shown to be effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46(3), 620 (2016)

    Article  Google Scholar 

  2. Xiao, B., Yin, S., Kaynak, O.: Tracking control of robotic manipulators with uncertain kinematics and dynamics. IEEE Trans. Ind. Electron. 63(10), 6439 (2016)

    Article  Google Scholar 

  3. He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst., Man, Cybern.: Syst. 46(3), 334 (2016)

    Article  Google Scholar 

  4. He, W., Dong, Y.: IEEE Transactions on Neural Networks and Learning Systems (2017)

  5. Inoue, K., Miyamoto, T., Okawa, Y.: In: Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems’ 96, IROS 96, vol. 2, pp 721–728. IEEE (1996)

  6. Dubowsky, S., Tanner, A.B.: In: Proceedings of the 4th international symposium on Robotics Research, pp 111–117. MIT Press (1988)

  7. Seraji, H.: In: Proceedings of the 1993 IEEE International Conference on Robotics and Automation, 1993, pp 28–35. IEEE (1993)

  8. Foulon, G., Fourquet, J.Y., Renaud, M.: In: Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1998, vol. 1, pp 374–379. IEEE (1998)

  9. Bayle, B., Fourquet, J.Y., Renaud, M.: Manipulability of wheeled mobile manipulators: Application to motion generation. The Int. J. Robot. Res. 22(7-8), 565 (2003)

    Article  Google Scholar 

  10. Chung, J.H., Velinsky, S.A.: Robust interaction control of a mobile manipulator–dynamic model based coordination. J. Intell. Robot. Syst. 26(1), 47 (1999)

    Article  Google Scholar 

  11. Tsai, C.C., Cheng, M.B., Lin, S.C.: Dynamic modeling and tracking control of a nonholonomic wheeled mobile manipulator with dual arms. J. Intell. Robot. Syst. 47(4), 317 (2006)

    Article  Google Scholar 

  12. Watanabe, K., Sato, K., Izumi, K., Kunitake, Y.: Analysis and control for an omnidirectional mobile manipulator. J. Intell. Robot. Syst. 27(1), 3 (2000)

    Article  Google Scholar 

  13. Hashimoto, M., Oba, F., Zenitani, S.: In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation, 1995, vol. 3, pp 2267–2272. IEEE (1995)

  14. Desai, J., Wang, C.C., Zefran, M., Kumar, V.: In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, 1996, vol. 3, pp 2073–2078. IEEE (1996)

  15. Desai, J.P., Kumar, V.: Optimal Motion Plans for Cooperating Nonholonomic Mobile Manipulators in an Environment with Obstacles. Tech. Rep. Technical Report 403, GRASP Laboratory, University of Pennsylvania (1996)

  16. Tanner, H.G., Loizou, S.G., Kyriakopoulos, K.J.: Nonholonomic navigation and control of cooperating mobile manipulators. IEEE Trans. Robot. Autom. 19(1), 53 (2003)

    Article  Google Scholar 

  17. Petitti, A., Franchi, A., Di Paola, D., Rizzo, A.: In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp 441–446. IEEE (2016)

  18. Korayem, M.H., Ghariblu, H.: Maximum allowable load on wheeled mobile manipulators imposing redundancy constraints. Robot. Auton. Syst. 44(2), 151 (2003)

    Article  Google Scholar 

  19. Korayem, M., Ghariblu, H., Basu, A.: Maximum allowable load of mobile manipulators for two given end points of end effector. Int. J. Advan. Manufact. Technol. 24(9-10), 743 (2004)

    Article  Google Scholar 

  20. Geniele, H., Patel, R.V., Khorasani, K.: End-point control of a flexible-link manipulator: theory and experiments. IEEE Trans. Control Syst. Technol. 5(6), 556 (1997)

    Article  Google Scholar 

  21. Goh, S.P., Plummer, A.R., Brown, M.D.: In: Proceedings of the 2000 American Control Conference, 2000, vol. 3, pp 2205–2209. IEEE (2000)

  22. He, W., Ouyang, Y., Hong, J.: Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans. Ind. Inform. 13(1), 48 (2017)

    Article  Google Scholar 

  23. De Luca, A., Panzieri, S., Ulivi, G.: In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation, 1998, vol. 1, pp 799–805. IEEE (1998)

  24. Zhou, Y.: In: Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems’ 93, IROS’93, vol. 2, pp 810–817. IEEE (1993)

  25. Rigatos, G.G.: Model-based and model-free control of flexible-link robots: A comparison between representative methods. Appl. Math. Model. 33(10), 3906 (2009)

    Article  MathSciNet  Google Scholar 

  26. Wang, F.Y., Gao, Y.: Advanced studies of flexible robotic manipulators: modeling, design, control and applications, vol. 4 (World Scientific, 2003)

  27. Tokhi, M.O., Azad, A.K.: Flexible robot manipulators: modelling, simulation and control, vol. 68 (Iet, 2008)

  28. Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mechan. Machine Theory 41(7), 749 (2006)

    Article  MathSciNet  Google Scholar 

  29. Kiang, C.T., Spowage, A., Yoong, C.K.: Review of control and sensor system of flexible manipulator. J. Intell. Robot. Syst. 77(1), 187 (2015)

    Article  Google Scholar 

  30. He, W., Zhang, S.: Control Design for nonlinear flexible wings of a robotic aircraft. IEEE Trans. Control Syst. Technol. 25(1), 351 (2017)

    Article  MathSciNet  Google Scholar 

  31. Lippiello, V., Ruggiero, F.: In: 10th International IFAC Symposium on Robot Control, pp 704–709 (2012)

  32. Khalifa, A., Fanni, M., Ramadan, A., Abo-Ismail, A.: In: 2012 First International Conference on Innovative Engineering Systems (ICIES), pp 109–114. IEEE (2012)

  33. Abaunza, H., Castillo, P., Victorino, A., Lozano, R.: J. Intell. Robot. Syst., 1–17 (2017)

  34. Danko, T.W., Oh, P.Y.: Design and control of a hyper-redundant manipulator for mobile manipulating unmanned aerial vehicles. J. Intell. Robot. Syst. 73(1–4), 709 (2014)

    Article  Google Scholar 

  35. Kobilarov, M.: Nonlinear trajectory control of multi-body aerial manipulators. J. Intell. Robot. Syst. 73(1–4), 679 (2014)

    Article  Google Scholar 

  36. Arleo, G., Caccavale, F., Muscio, G., Pierri, F.: In: 2013 21st Mediterranean Conference on Control and Automation (MED), pp 1174–1180. IEEE (2013)

  37. Forte, F., Naldi, R., Macchelli, A., Marconi, L.: In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp 4487–4492. IEEE (2014)

  38. Kim, S., Choi, S., Kim, H.J.: In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 4990–4995. IEEE (2013)

  39. Korpela, C., Orsag, M., Pekala, M., Oh, P.: In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp 4922–4927. IEEE (2013)

  40. Mebarki, R., Lippiello, V., Siciliano, B.: In: ASME 2013 Dynamic Systems and Control Conference, pp V001T01A003–V001T01A003. American Society of Mechanical Engineers (2013)

  41. Kondak, K., Krieger, K., Albu-Schaeffer, A., Schwarzbach, M., Laiacker, M., Maza, I., Rodriguez-Castano, A., Ollero, A.: Closed-loop behavior of an autonomous helicopter equipped with a robotic arm for aerial manipulation tasks. Int. J. Adv. Robot. Syst. 10(2), 145 (2013)

    Article  Google Scholar 

  42. Wuthier, D., Kominiak, D., Kanellakis, C., Andrikopoulos, G., Fumagalli, M., Schipper, G., Nikolakopoulos, G.: In: 2016 24th Mediterranean Conference on Control and Automation (MED), pp 665–670. IEEE (2016)

  43. Lipiello, V., Ruggiero, F.: In: RSJ International Conference on Intelligent Robots and Systems, pp 3768–3773 (2012)

  44. Buonocore, L.R., Cacace, J., Lippiello, V.: In: 2015 23th Mediterranean Conference on Control and Automation (MED), pp 617–623. IEEE (2015)

  45. Cataldi, E., Muscio, G., Trujillo, M., Rodriguez, Y., Pierri, F., Antonelli, G., Caccavale, F., Viguria, A., Chiaverini, S., Ollero, A.: In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 3848–3853. IEEE (2016)

  46. Seraji, H.: A unified approach to motion control of mobile manipulators. Int. J. Robot. Res. 17(2), 107 (1998)

    Article  Google Scholar 

  47. Ghariblu, H., Korayem, M.H.: Trajectory optimization of flexible mobile manipulators. Robotica 24(03), 333 (2006)

    Article  Google Scholar 

  48. Korayem, M.H., Rahimi, H., Nikoobin, A.: Mathematical modeling and trajectory planning of mobile manipulators with flexible links and joints. Appl. Math. Model. 36(7), 3229 (2012)

    Article  MathSciNet  Google Scholar 

  49. Lippiello, V., Cacace, J., Santamaria-Navarro, A., Andrade-Cetto, J., Trujillo, M.Á., Esteves, Y.R., Viguria, A.: Hybrid visual servoing with hierarchical task composition for aerial manipulation. IEEE Robot. Autom. Lett. 1(1), 259 (2016)

    Article  Google Scholar 

  50. Abe, A.: Trajectory planning for residual vibration suppression of a two-link rigid-flexible manipulator considering large deformation. Mech. Mach. Theory 44(9), 1627 (2009)

    Article  Google Scholar 

  51. Doyle, J.F.: Static and dynamic analysis of structures: with an emphasis on mechanics and computer matrix methods, vol 6 (Springer Science & Business Media, 2012)

  52. Dym, C.L., Shames, I.H.: Solid mechanics (Springer, 1973)

  53. Fazel, M.R., Moghaddam, M.M., Poshtan, J.: Application of GDQ method in nonlinear analysis of a flexible manipulator undergoing large deformation. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 227(12), 2671 (2013)

    Article  Google Scholar 

  54. Khalifa, A., Fanni, M., Ramadan, A., Abo-Ismail, A.: In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 1666–1671. IEEE (2013)

  55. Hoffman, J.D., Frankel, S.: Numerical methods for engineers and scientists (CRC Press, 2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeel Khanmirza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanmirza, E., Daneshjou, K. & Ravandi, A.K. Underactuated Flexible Aerial Manipulators: a New Framework for Optimal Trajectory Planning Under Constraints Induced by Complex Dynamics. J Intell Robot Syst 92, 599–613 (2018). https://doi.org/10.1007/s10846-017-0711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0711-6

Keywords

Navigation