Skip to main content

Towards Autonomous Planetary Exploration

The Lightweight Rover Unit (LRU), its Success in the SpaceBotCamp Challenge, and Beyond


Planetary exploration poses many challenges for a robot system: From weight and size constraints to extraterrestrial environment conditions, which constrain the suitable sensors and actuators. As the distance to other planets introduces a significant communication delay, the efficient operation of a robot system requires a high level of autonomy. In this work, we present our Lightweight Rover Unit (LRU), a small and agile rover prototype that we designed for the challenges of planetary exploration. Its locomotion system with individually steered wheels allows for high maneuverability in rough terrain and stereo cameras as its main sensors ensure the applicability to space missions. We implemented software components for self-localization in GPS-denied environments, autonomous exploration and mapping as well as computer vision, planning and control modules for the autonomous localization, pickup and assembly of objects with its manipulator. Additional high-level mission control components facilitate both autonomous behavior and remote monitoring of the system state over a delayed communication link. We successfully demonstrated the autonomous capabilities of our LRU at the SpaceBotCamp challenge, a national robotics contest with focus on autonomous planetary exploration. A robot had to autonomously explore an unknown Moon-like rough terrain, locate and collect two objects and assemble them after transport to a third object – which the LRU did on its first try, in half of the time and fully autonomously. The next milestone for our ongoing LRU development is an upcoming planetary exploration analogue mission to perform scientific experiments at a Moon analogue site located on a volcano.


  1. ROBEX - Robotic Exploration of Extreme Environments. Accessed 30 Aug 2016

  2. DLR SpaceBot Camp. (2015). Accessed 31 Aug 2016

  3. DLR SpaceBot Camp 2015 - Weltraumroboter live erleben. (2015). Accessed 30 Aug 2016

  4. DARPA Robotics Challenge. (2016). Accessed 30 Aug 2016

  5. Demo-Missions - ROBEX. (2016). Accessed 24 Aug 2016

  6. Google Lunar XPRIZE. (2016). Accessed 30 Aug 2016

  7. Lunar Reconnaissance Orbiter Camera. (2016). Accessed 24 Aug 2016

  8. Manipulation - Kinova. (2016). Accessed 30 Aug 2016

  9. Mission to the Moon. (2016). Accessed 30 Aug 2016

  10. Mosh: the mobile shell. (2016). Accessed 30 Aug 2016

  11. Products - F&P. (2016). Accessed 30 Aug 2016

  12. ROBEX Field Trip - ROBEX. (2016). Accessed 24 Aug 2016

  13. Albu-Schäffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2007)

    Article  MATH  Google Scholar 

  14. Avsar, C., Frese, W., Meschede, T., Brieß, K.: Developing a planetary rover with students: Space education at TU Berlin. J. Autom. Mob. Robot. Intell. Syst., 8 (2014)

  15. Beetz, M., Jain, D., Mȯsenlechner, L., Tenorth, M., Kunze, L., Blodow, N., Pangercic, D.: Cognition-enabled autonomous robot control for the realization of home chore task intelligence. Proc. IEEE 100(8), 2454–2471 (2012)

    Article  Google Scholar 

  16. Brand, C., Schuster, M.J., Hirschmüller, H., Suppa, M.: Stereo-vision based obstacle mapping for indoor/outdoor SLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1846–1853. IEEE, Chicago (2014),

  17. Brand, C., Schuster, M.J., Hirschmüller, H., Suppa, M.: Submap matching for stereo-vision based indoor/outdoor SLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5093–5100. IEEE, Hamburg (2015),

  18. Brooks, R.A.: Intelligence without representation. Artif. Intell. 47(1-3), 139–159 (1991)

    Article  Google Scholar 

  19. Brunner, S.G., Steinmetz, F., Belder, R., Doemel, A.: RAFCON: A graphical tool for engineering complex, robotic tasks. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Deajeon (2016)

  20. Brunner, S.G., Steinmetz, F., Belder, R., Dömel, A.: RAFCON: A graphical tool for task programming and mission control. In: RoboCup 2016: Robot Soccer World Cup XX, Lecture Notes in Computer Science. Springer, Leipzig (2016)

  21. Büttner, S., Márton, Z.C., Hertkorn, K.: Automatic scene parsing for generic object descriptions using shape primitives. Robot. Auton. Syst. 76, 93–112 (2016).

    Article  Google Scholar 

  22. Byrne, C.: The Moon’s Near Side Megabasin and Far Side Bulge, 1st edn. Springer-Verlag, New York (2013)

    Book  Google Scholar 

  23. Czeluschke, A., Knapmeyer, M., Sohl, F., Bamberg, M., Lange, C., Luther, R., Margonis, A., Rosta, R., Schmitz, N.: Robex Asn study team: The ROBEX-ASN - a concept study for an active seismic network on the moon. In: European Planetary Science Congress 2014 (EPSC), vol. 9, pp. EPSC2014–728. Cascais, (2014)

  24. Diankov, R., Kuffner, J.: OpenRAVE: A Planning Architecture for Autonomous Robotics. Robotics Institute, Pittsburgh. Tech. Rep. CMU-RI-TR-08-34, Pittsburgh (2008)

  25. Dietrich, A., Wimböck, T., Albu-Schäffer, A., Hirzinger, G.: Reactive whole-body control: Dynamic mobile manipulation using a large number of actuated degrees of freedom. IEEE Robot. Autom. Mag. 19(2), 20–33 (2012)

    Article  Google Scholar 

  26. Eich, M., Hartanto, R., Kasperski, S., Natarajan, S., Wollenberg, J.: Towards coordinated multirobot missions for lunar sample collection in an unknown environment. J. Field Robot. R. 31(1). (2014)

  27. Gonzalez-Banos, H.H., Latombe, J.C.: Navigation strategies for exploring indoor environments. Int. J. Robot. Res. 21(10–11), 829–848 (2002)

    Article  Google Scholar 

  28. Grotzinger, J.P., et al.: Mars science laboratory mission and science investigation. Space Sci. Rev. 170(1), 5–56 (2012)

    Article  Google Scholar 

  29. Haarmann, R., Hofmann, P., Richter, L., Claasen, F., Apfelbeck, M., Klinkner, S., Schwendner, J.: Mobile Payload Element (MPE): concept study for a sample fetching rover for the ESA Lunar Lander Mission. Planet. Space Sci. 74(1), 283–295 (2012)

    Article  Google Scholar 

  30. Hellerer, M., Bellmann, T., Schlegel, F.: The DLR visualization library - recent development and applications. In: Proceedings of the 10th International Modelica Conference, pp. 899–911. Linköping University Electronic Press; Linköpings universitet, Lund (2014),

  31. Hellerer, M., Schuster, M.J., Lichtenheldt, R.: Software-in-the-loop simulation of a planetary rover. In: The International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS). Beijing (2016)

  32. Heppner, G., Roennau, A., Oberländer, J., Klemm, S., Dillmann, R.: Laurope - six legged walking robot for planetary exploration participating in the spacebot cup. In: International Conference on Automation and Robotics in Space (ASTRA). Noordwijk (2015)

  33. Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 30(2), 328–341 (2008)

    Article  Google Scholar 

  34. Hirschmüller, H., Innocent, P.R., Garibaldi, J.M.: Fast, unconstrained camera motion estimation from stereo without tracking and robust statistics. In: International Conference on Control, Automation, Robotics and Vision (ICARCV). Singapore. (2002)

  35. Hirzinger, G., Sporer, N., Albu-Schaffer, A., Hahnle, M., Krenn, R., Pascucci, A., Schedl, M.: Dlr’s torque-controlled light weight robot III-are we reaching the technological limits now?. In: IEEE International conference on robotics and automation (ICRA), vol. 2, pp. 1710–1716. IEEE (2002)

  36. Holz, D., Basilico, N., Amigoni, F., Behnke, S.: Evaluating the efficiency of frontier-based exploration strategies. In: International Symposium on Robotics (ISR) and the German Conference on Robotics (ROBOTIK). VDE, Munich (2010)

  37. Holz, D., Behnke, S.: Registration of non-uniform density 3D point clouds using approximate surface reconstruction. In: International Symposium on Robotics (ISR) and the German Conference on Robotics (ROBOTIK), Munich (2014)

  38. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. Software available at (2013)

  39. Jennings, E., Seguí, J., Gao, J., Clare, L., Abraham, D.: The impact of traffic prioritization on deep space network mission traffic. In: IEEE Aerospace Conference (2011)

  40. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J.J., Dellaert, F.: iSAM2 : Incremental smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 31, 217–236 (2012)

    Article  Google Scholar 

  41. Klem, S.M., Henriksen, M.R., Stopar, J., Boyd, A., Robinson, M.S.: Controlled LROC narrow angle camera high resolution mosaics. In: Lunar Planetary Science Conference. The Woodlands (2014)

  42. Kriegel, S., Rink, C., Bodenmüller, T., Suppa, M.: Efficient next-best-scan planning for autonomous 3D surface reconstruction of unknown objects. J. Real-Time Image Process. 10(4), 611–631 (2015).

    Article  Google Scholar 

  43. Kubota, T., Otsuki, M., Shimada, T., Kuroda, Y., Kunii, Y.: Test-beds rovers for planetary surface exploration. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS). Turin (2012)

  44. LaValle, S.M., Kuffner, J.J. Jr: Rapidly-exploring random trees: Progress and Prospects. Algorithmic and Computational Robotics: New Directions pp. 293—308 (2000)

  45. Lichtenheldt, R., Hellerer, M., Barthelmes, S., Buse, F.: Heterogeneous , multi-tier wheel ground contact simulation for planetary exploration. In: ECCOMAS Thematic Conference on Multibody Dynamics. Barcelona (2015)

  46. Maimone, M., Johnson, A., Cheng, Y., Willson, R., Matthies, L.E.M.H., Khatib, O.: Experimental Robotics IX, chap. Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission, pp. 3–13. Springer, Berlin (2006)

    Google Scholar 

  47. Ott, C.: Cartesian Impedance Control of Redundant and Flexible-Joint Robots, Spr. Tra. Adv. Robot, vol. 49. Springer, Berlin (2008)

    Google Scholar 

  48. Porges, O., Stouraitis, T., Borst, C., Roa, M.A.: Reachability and capability analysis for manipulation tasks. In: ROBOT2013: First Iberian Robotics Conference, pp. 703–718. Springer, Madrid (2014)

  49. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: An open-source robot operating system. In: Workshop on Open Source Software (ICRA), vol. 3, p. 5. Kobe, Japan (2009)

  50. Reill, J., Sedlmayr, H.J., Kuß, S., Neugebauer, P., Maier, M., Gibbesch, A., Schäfer, B., Albu-Schäffer, A.: Development of a mobility drive unit for low gravity planetary body exploration. In: Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA). Noordwijk (2013)

  51. Reill, J., Sedlmayr, H.J., Neugebauer, P., Maier, M., Krämer, E., Lichtenheldt, R.: MASCOT - asteroid lander with innovative mobility mechanism. In: Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA). Noordwijk (2015)

  52. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA). Shanghai (2011)

  53. Schadler, M., Stückler, J., Behnke, S.: Data set Spacebot Arena. Accessed 30 Aug 2016 (2014)

  54. Schaub, A., Hellerer, M., Bodenmu̇ller, T.: Simulation of artificial intelligence agents using Modelica and the DLR visualization library. In: International Modelica Conference. Fu̇rstenfeldbruck (2012)

  55. Schmid, K., Ruess, F., Burschka, D.: Local reference filter for life-long vision aided inertial navigation. In: International Conference on Information Fusion (FUSION). IEEE, Madrid (2014)

  56. Schmid, K., Ruess, F., Suppa, M., Burschka, D.: State estimation for highly dynamic flying systems using key frame Odometry with varying time delays. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vilamoura (2012)

  57. Schneider, F.E., Wildermuth, D., Wolf, H.L.: ELROB and EURATHLON: Improving search & rescue robotics through real-world robot competitions. In: International Workshop on Robot Motion and Control (RoMoCo), pp. 118–123. IEEE, Poznan (2015)

  58. Schuster, M.J., Brand, C., Brunner, S.G., Lehner, P., Reill, J., Riedel, S., Bodenmüller, T., Bussmann, K., Büttner, S., Dömel, A., Friedl, W., Grixa, I., Hellerer, M., Hirschmüller, H., Kassecker, M., Márton, Z.C., Nissler, C., Ruess, F., Suppa, M., Wedler, A.: The LRU rover for autonomous planetary exploration and its success in the SpaceBotCamp challenge. In: IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). Bragança (2016)

  59. Schuster, M. J., Brand, C., Hirschmüller, H., Suppa, M., Beetz, M.: Multi-Robot 6D graph SLAM connecting decoupled local reference filters. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg (2015)

  60. Schwendner, J., Röhr, T., Haase, S., Wirkus, M., Manz, M., Arnold, S., Machowinski, J.: The artemis rover as an example for model based engineering in space robotics. In: Workshop Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Hong Kong (2014)

  61. Senarathne, P.G.C.N., Wang, D: Frontier based exploration with task cancellation. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–6. IEEE, Toyako-cho (2014)

  62. Sentis, L., Khatib, O.: Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. Hum. Robot. 2(4), 505–518 (2005)

    Article  Google Scholar 

  63. Shreiner, D.: OpenGL programming guide: The official guide to learning openGL, Versions 3.0 and 3.1, 7th edn. Addison-Wesley Professional (2009)

  64. Strobl, K.H., Hirzinger, G.: Optimal hand-eye calibration. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Beijing (2006)

  65. Stückler, J., Schwarz, M., Schadler, M., Topalidou-Kyniazopoulou, A., Behnke, S.: NimbRo Explorer: Semi-autonomous exploration and mobile manipulation in rough terrain. J. Field Robot. (2015)

  66. Sünderhauf, N., Neubert, P., Truschzinski, M., Wunschel, D., Pöschmann, J., Lange, S., Protzel, P.: Phobos and Deimos on mars - two autonomous robots for the DLR SpaceBot cup. In: Proceedings of International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS). Montreal (2014)

  67. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G.: Stanley: The robot that won the DARPA grand challenge. J. Field Robot. 23(9), 661–692 (2006)

    Article  Google Scholar 

  68. Tran, T., Rosiek, M.R., Beyer, R.A., Mattson, S., Howington-Kraus, E., Robinson, M.S., Archinal, B.A., Edmundson, K., Harbour, D., Anderson, E.: Generating digital terrain models using LROC NAC images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Archives), 38 (2010)

  69. Washington, R., Golden, K., Bresina, J., Smith, D., Anderson, C., Smith, T.: Autonomous rovers for mars exploration. In: IEEE Aerospace Conference, vol. 1. Snowmass at Aspen (1999)

  70. Wedler, A., Chalon, M., Landzettel, K., Gȯrner, M., Krȧmer, E., Gruber, R., Beyer, A., Sedlmayr, H.J., Willberg, B., Wieland, B., Reill, J., Grebenstein, M., Schedl, M., Albu-Schȧffer, A., Hirzinger, G.: DLR’s dynamic actuator modules for robotic space applications. In: Aerospace Mechanisms Symposium. Passadena - Hilton -JPL (2012)

  71. Wedler, A., Maier, A., Reill, J., Brand, C., Hirschmüller, H., Schuster, M.J., Suppa, M., Beyer, A., Lii, N.Y., Maier, M., Sedlmayr, H.J., Haarmann, R.: Pan/Tilt-Unit as a perception module for extra-terrestrial vehicle and landing systems. In: Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA). Noordwijk (2013)

  72. Wedler, A., Rebele, B., Reill, J., Suppa, M., Hirschmüller, H., Brand, C., Schuster, M., Vodermayer, B., Gmeiner, H., Maier, A., Willberg, B., Bussmann, K., Wappler, F., Hellerer, M., Lichtenheldt, R.: LRU - lightweight rover unit. In: Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA). Noordwijk (2015)

  73. Wettergreen, D., Wagner, M., Jonak, D., Baskaran, V., Deans, M., Heys, S., Pane, D., Smith, T., Teza, J., Thompson, D.R., Tompkins, P., Williams, C.: Long-distance autonomous survey and mapping in the robotic investigation of life in the atacama desert. In: Proceedings of International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS). Hollywood (2008)

  74. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Int. Conf. Autonom. Agents, pp. 47–53. ACM, Minuenpolis (1998)

  75. Zacharias, F., Borst, C., Hirzinger, G.: Capturing robot workspace structure: Representing robot capabilities. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3229–3236, San Diego (2007),

  76. Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., Dang, T., Franke, U., Appenrodt, N., Keller, C.G., Kaus, E., Herrtwich, R.G., Rabe, C., Pfeiffer, D., Lindner, F., Stein, F., Erbs, F., Enzweiler, M., Knöppel, C., Hipp, J., Haueis, M., Trepte, M., Brenk, C., Tamke, A., Hanaat, M. G., Braun, M., Joos, A., Fritz, H., Mock, H., Hein, M., Zeeb, E.: Making bertha drive - an autonomous journey on a historic route. IEEE Intell. Transp. Syst. Mag. 6(2), 8–20 (2014)

    Article  Google Scholar 

Download references


We thank the members of the Mobile Robots Group at DLR-RMC, especially Annika Maier, Bertram Willberg, Florian Schmidt and Philipp Lutz as well as our system administrators, in particular Stefan Engelhardt and Stefan von Dombrowski for their assistance. We thank Dr. Máximo A. Roa, Prof. Michael Beetz PhD, PD Dr. habil. Rudolph Triebel and Prof. Dr. Alin Albu-Schäffer for their support and many valuable discussions. We thank the anonymous reviewers for their insightful comments and suggestions.


This work was supported by the Helmholtz Association, project alliance ROBEX (contract number HA-304) and partially funded by the DLR Space Administration.

Author information



Corresponding author

Correspondence to Martin J. Schuster.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the Helmholtz Association, project alliance ROBEX (contract number HA-304) and partially funded by the DLR Space Administration.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 292 MB)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schuster, M.J., Brunner, S.G., Bussmann, K. et al. Towards Autonomous Planetary Exploration. J Intell Robot Syst 93, 461–494 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Autonomous mobile robots
  • Planetary exploration
  • Robotic challenge
  • Navigation
  • Manipulation
  • Autonomous task execution

Mathematics Subject Classification (2010)

  • 68T40
  • 70B15
  • 93C85
  • 68T45