Skip to main content
Log in

Faster RRT-based Nonholonomic Path Planning in 2D Building Environments Using Skeleton-constrained Path Biasing

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a faster RRT-based path planning approach for regular 2-dimensional (2D) building environments. To minimize the planning time, we adopt the idea of biasing the RRT tree-growth in more focused ways. We propose to calculate the skeleton of the 2D environment first, then connect a geometrical path on the skeleton, and grow the RRT tree via the seeds generated locally along this path. We conduct batched simulations to find the universal parameters in manipulating the seeds generation. We show that the proposed skeleton-biased locally-seeded RRT (skilled-RRT) is faster than the other baseline planners (RRT, RRT*, A*-RRT, Theta*-RRT, and MARRT) through experimental tests using different vehicles in different 2D building environments. Given mild assumptions of the 2D environments, we prove that the proposed approach is probabilistically complete. We also present an application of the skilled-RRT for unmanned ground vehicle. Compared to the other baseline algorithms (Theta*-RRT and MARRT), we show the applicability and fast planning of the skilled-RRT in real environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguinaga, I., Borro, D., Matey, L.: Parallel rrt-based path planning for selective disassembly planning. Int. J. Adv. Manuf. Technol. 36(11-12), 1221–1233 (2008)

    Article  Google Scholar 

  2. Alterovitz, R., Patil, S., Derbakova, A.: Rapidly-exploring roadmaps: Weighing exploration vs. refinement in optimal motion planning 2011 IEEE International Conference on Robotics and Automation (ICRA), pp 3706–3712 (2011)

    Chapter  Google Scholar 

  3. Arslan, O., Tsiotras, P.: Dynamic programming guided exploration for sampling-based motion planning algorithms 2015 IEEE International Conference on Robotics and Automation (ICRA), pp 4819–4826 (2015)

    Chapter  Google Scholar 

  4. Bekris, K., Kavraki, L.: Informed and probabilistically complete search for motion planning under differential constraints First International Symposium on Search Techniques in Artificial Intelligence and Robotics (STAIR), Chicago, IL (2008)

  5. Brunner, M., Brüggemann, B, Schulz, D.: Hierarchical rough terrain motion planning using an optimal sampling-based method 2013 IEEE International Conference on Robotics and Automation (ICRA), pp 5539–5544 (2013)

    Chapter  Google Scholar 

  6. Choudhury, S., Gammell, J.D., Barfoot, T.D., Srinivasa, S.S., Scherer, S.: Regionally accelerated batch informed trees (rabit*): A framework to integrate local information into optimal path planning 2016 IEEE International Conference on Robotics and Automation (ICRA), pp 4207–4214 (2016)

    Chapter  Google Scholar 

  7. Cowlagi, R.V., Tsiotras, P.: Hierarchical motion planning with dynamical feasibility guarantees for mobile robotic vehicles. IEEE Trans. Robot. 28(2), 379–395 (2012)

    Article  Google Scholar 

  8. Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: Any-angle path planning on grids. J. Artif. Intell. Res. 39, 533–579 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Denny, J., Greco, E., Thomas, S., Amato, N.M.: Marrt: Medial axis biased rapidly-exploring random trees 2014 IEEE International Conference on Robotics and Automation (ICRA), pp 90–97 (2014). doi:10.1109/ICRA.2014.6906594

    Chapter  Google Scholar 

  10. Denny, J., Colbert, J., Qin, H., Amato, N.M.: On the theory of user-guided planning 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 4794–4801. IEEE (2016)

  11. Dong, Y., Zhang, Y.: Application of rrt algorithm to unmanned ground vehicle motion planning and obstacle avoidance Proceedings of International Conference on Intelligent Unmanned Systems, vol. 11 (2015)

  12. Dong, Y., Zhang, Y., Ai, J.: Experimental test of unmanned ground vehicle delivering goods using RRT path planning algorithm. Unmanned Syst. 5(1), 45–57 (2017). doi:10.1142/S2301385017500042

    Article  Google Scholar 

  13. Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: Informed rrt*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2997–3004 (2014)

    Chapter  Google Scholar 

  14. Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: Batch informed trees (bit*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs 2015 IEEE International Conference on Robotics and Automation (ICRA), pp 3067–3074 (2015)

    Chapter  Google Scholar 

  15. Garrido, S., Moreno, L., Abderrahim, M., Martin, F.: Path planning for mobile robot navigation using voronoi diagram and fast marching 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2376–2381 (2006). doi:10.1109/IROS.2006.282649

    Chapter  Google Scholar 

  16. Geraerts, R.: Planning short paths with clearance using explicit corridors 2010 IEEE International Conference on Robotics and Automation (ICRA), pp 1997–2004. IEEE (2010)

  17. Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space costmaps. IEEE Trans. Robot. 26(4), 635–646 (2010)

    Article  Google Scholar 

  18. Jalel, S., Marthon, P., Hamouda, A.: A new path generation algorithm based on accurate nurbs curves. International Journal of Advanced Robotic Systems 13, 10.5772/63072 (2016)

  19. Kalisiak, M., van de Panne, M.: Faster motion planning using learned local viability models Proceedings 2007 IEEE International Conference on Robotics and Automation, pp 2700–2705 (2007)

    Chapter  Google Scholar 

  20. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  MATH  Google Scholar 

  21. Kuffner, J.J., LaValle, S.M.: Rrt-Connect: an efficient approach to single-query path planning Proceedings. ICRA’00. IEEE International Conference On Robotics and Automation, 2000, vol. 2, pp 995–1001. IEEE (2000)

  22. Latombe, J.: Robot Motion Planning. The Springer International Series in Engineering and Computer Science. Springer, USA (2012)

    Google Scholar 

  23. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  24. Mirtich, B., Canny, J.: Using skeletons for nonholonomic path planning among obstacles Proceedings 1992 IEEE International Conference on Robotics and Automation, vol. 3, pp 2533–2540 (1992). doi:10.1109/ROBOT.1992.220060

    Chapter  Google Scholar 

  25. Neto, A.A., Macharet, D.G., Campos, M.F.: On the generation of trajectories for multiple uavs in environments with obstacles Selected papers from the 2nd International Symposium on UAVs, Reno, Nevada, USA June 8–10, 2009, pp 123–141. Springer (2009)

  26. Oriolo, G., Vendittelli, M., Ulivi, G.: Path planning for mobile robots via skeletons on fuzzy maps. Intell. Autom. Soft Comput. 2(4), 355–374 (1996)

    Article  Google Scholar 

  27. Palmieri, L., Koenig, S., Arras, K.O.: Rrt-based nonholonomic motion planning using any-angle path biasing 2016 IEEE International Conference on Robotics and Automation (ICRA), pp 2775–2781 (2016)

    Chapter  Google Scholar 

  28. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Discrete search leading continuous exploration for kinodynamic motion planning Robotics: Science and Systems, pp 326–333 (2007)

    Google Scholar 

  29. Plaku, K.L.E.E., Vardi, M.Y.: Motion planning with dynamics by a synergistic combination of layers of planning. IEEE Trans. Robot. 26(3), 469–482 (2010)

    Article  Google Scholar 

  30. Rickert, M., Brock, O., Knoll, A.: Balancing exploration and exploitation in motion planning IEEE International Conference on Robotics and Automation, 2008. ICRA, pp 2812–2817 (2008)

    Chapter  Google Scholar 

  31. Rickert, M., Sieverling, A., Brock, O.: Balancing exploration and exploitation in sampling-based motion planning. IEEE Trans. Robot. 30(6), 1305–1317 (2014)

    Article  Google Scholar 

  32. Rodriguez, T.X., Lien, J.M., Amato, N.M.: An obstacle-based rapidly-exploring random tree Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp 895–900 (2006). doi:10.1109/ROBOT.2006.1641823

    Chapter  Google Scholar 

  33. Taïx, M., Flavigné, D., Ferré, E.: Human interaction with motion planning algorithm. J. Intell. Robot. Syst. 67(3), 285–306 (2012)

    Article  Google Scholar 

  34. Yang, D.H., Hong, S.K.: A roadmap construction algorithm for mobile robot path planning using skeleton maps. Adv. Robot. 21(1-2), 51–63 (2007)

    Article  Google Scholar 

  35. Yang, K., Moon, S., Yoo, S., Kang, J., Doh, N.L., Kim, H.B., Joo, S.: Spline-based rrt path planner for non-holonomic robots. J. Intell. Robot. Syst. 73(1-4), 763 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The research was partially supported by the ST Engineering-NTU Corporate Lab through the NRF corporate lab@university scheme. The authors are also indebted to Mr. Mohhamadali Askari Hemmat from Department of Mechanical and Industrial Engineering in Concordia University Canada for the discussion on this idea, and Mr. Reinaldo Maslim from School of Mechanical and Aerospace Engineering in Nanyang Technological University for the real test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Kayacan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(WMV 26.7 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Camci, E. & Kayacan, E. Faster RRT-based Nonholonomic Path Planning in 2D Building Environments Using Skeleton-constrained Path Biasing. J Intell Robot Syst 89, 387–401 (2018). https://doi.org/10.1007/s10846-017-0567-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0567-9

Keywords

Navigation