Abstract
In order to avoid being bedridden, a preemptive walking rehabilitation is essential for people who lose their walking ability because of illness or accidents. In a previous study, we developed an omnidirectional walking training robot (WTR), the effectiveness of which in rehabilitation was validated by clinical testing. In the primary stage of the walking training, the WTR guides the user to follow the predesigned therapy program to conduct the walking training. This study focuses on the later stages of training in which the user plays an active role of determining the training by himself/herself, and the WTR must follow the user’s intent. However, identifying a user’s intent is challenging. In the present study, we address this problem by introducing a directional-intent identification method based on a distance-type fuzzy reasoning algorithm. The effectiveness of the directional identification method is experimentally confirmed.
References
United Nations: Home-assistant robot for an aging society. Department of Economic and Social Affairs, Population Division, World Population Prospects. Revision (2015)
Chen, B.: Trends in disability in a super-aging society: Adapting the future elderly model to japan 143rd APHA Annual Meeting and Exposition (October 31-November 4, 2015). APHA, 2015
Guralnik, J.M., Fried, L.P., Salive, M.E.: Disability as a public health outcome in the aging population. Annu. Rev. Public Health 17(1), 25–46 (1996)
Lee, I.-M., Buchner, D.M.: The importance of walking to public health. Med. Sci. Sports Exerc. 40(7 Suppl), S512—8 (2008)
Bernhardt, J., Churilov, L., Dewey, H., Lindley, R.I., Moodie, M., Collier, J., Langhorne, P., Thrift, A.G., Donnan, G.: Statistical analysis plan (sap) for a very early rehabilitation trial (avert): an international trial to determine the efficacy and safety of commencing out of bed standing and walking training (very early mobilization) within 24 h of stroke onset vs. usual stroke unit care. Int. J. Stroke 10 (1), 23–24 (2015)
Karttunen, A.H., Kallinen, M., Peurala, S.H., Häkkinen, A: Walking training and functioning among elderly persons with stroke: Results of a prospective cohort study. PM&R 7(12), 1205–1214 (2015)
Pyo, S-H, Min-Gyun, O., Yoon, J-W: Development of an active haptic cane for gait rehabilitation 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 4464–4469. IEEE, p 2015
Maguire, C., Sieben, J.M., Scheidhauer, H., Romkes, J., Suica, Z., de Bie, R.A.: The effect of crutches, an orthosis theratogs, and no walking aids on the recovery of gait in a patient with delayed healing post hip fracture: A case report. Physiotherapy theory and practice, p. 1–13 (2016)
Mun, K.-R., Guo, Z., Yu, H.: Development and evaluation of a novel overground robotic walker for pelvic motion support 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), p. 95–100. IEEE, p 2015
Walsh, C.J., Endo, K., Herr, H.: A quasi-passive leg exoskeleton for load-carrying augmentation. Int. J. Humanoid Rob. 4(03), 487–506 (2007)
Kyousuke, G., Kotani, N., Hiroyuki, F., Kazuya, S., Reiko, T., Arisa, K., Satoshi, K., Kazuhiko, S., Etuji, S., Masatoshi, N., et al.: Effectiveness of the single-joint halⓇ robot suit for rehabilitation after orthopedic surgery. Physiotherapy 101, e806—e807 (2015)
Gupta, A., O’Malley, M.K., Patoglu, V., Burgar, C.: Design, control and performance of ricewrist: A force feedback wrist exoskeleton for rehabilitation and training. Int. J. Robot. Res. 27(2), 233–251 (2008)
Meuleman, J., van Asseldonk, E., van Oort, G., Rietman, J., van der Kooij, H.: Lopes ii—design and evaluation of an admittance controlled gait training robot with shadow-leg approach (2015)
Jin, X., Cui, X., Agrawal, S.K.: Design of a cable-driven active leg exoskeleton (c-alex) and gait training experiments with human subjects 2015 IEEE International Conference on Robotics and Automation (ICRA), p. 5578–5583. IEEE (2015)
Alamdari, A., Krovi, V.: Design and analysis of a cable-driven articulated rehabilitation system for gait training. Journal of Mechanisms and Robotics (2016)
Wang, Y., Wang, S., Tan, R., Jiang, Y., Ishida, K., Fujie, MG.: Motion control for an intelligent walking support machine. ICIC Express Lett. 6(1), 145–149 (2012)
Wang, S.Y., Inoue, H., Kawata, K., Inoue, Y., Nagano, M., Ino, S., Ishida, K., Kimura, T.: Developing the omni-directional mobile walker and verifying its effect of increase in the muscle power Proceedings of the JSME Symposium on Walfare Engineering, p. 176–177 (2007)
Mavroidis, C., Nikitczuk, J., Weinberg, B., Danaher, G., Jensen, K., Pelletier, P., Prugnarola, J., Stuart, R., Arango, R., Leahey, M., et al.: Smart portable rehabilitation devices. J. Neuroeng. Rehabil. 2(1), 1 (2005)
Ishida, K., Wang, S.Y., Nagano, T., Kishi, T.: Development of an all-way mobile walker. J. Phys. Med. 19(4), 246–250 (2008)
Riman, C.F., Peralta, H., Monacelli, E., Alayli, Y., Hajj, A.E., Mougharbel, I.: A multi-interface platform system for assistance and evaluation of disabled people, applied bionics and biomechanics. Appl. Bionics Biomech. 8(1), 55–66 (2011)
Niazi, I.K., Mrachacz-Kersting, N., Jiang, N., Dremstrup, K., Farina, D.: Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 20(4), 595–604 (2012)
Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N., Kübler, A: An meg-based brain–computer interface (bci). Neuroimage 36(3), 581–593 (2007)
Sorger, B., Reithler, J., Dahmen, B., Goebel, R.: A real-time fmri-based spelling device immediately enabling robust motor-independent communication. Curr. Biol. 22(14), 1333–1338 (2012)
Lee, J-H, Ryu, J., Jolesz, F.A., Cho, Z-H, Yoo, S-S: Brain–machine interface via real-time fmri: preliminary study on thought-controlled robotic arm. Neurosci. Lett. 450(1), 1–6 (2009)
Naseer N, Hong, K-S: fnirs-based brain-computer interfaces: a review. Frontiers in human neuroscience, 9, 2015
Walter, M.R., Antone, M., Chuangsuwanich, E., Correa, A., Davis, R., Fletcher, L., Frazzoli, E., Friedman, Y., Glass, J., How, J.P., et al.: A situationally aware voice-commandable robotic forklift working alongside people in unstructured outdoor environments. J. Field Rob. 32(4), 590–628 (2015)
Kofman, J., Xianghai, W., Luu, T.J., Verma, S.: Teleoperation of a robot manipulator using a vision-based human-robot interface. IEEE Trans. Ind. Electron. 52(5), 1206–1219 (2005)
Bascetta, L., Ferretti, G., Rocco, P., Ardö, H, Bruyninckx, H., Demeester, E., Di Lello, E.: Towards safe human-robot interaction in robotic cells: an approach based on visual tracking and intention estimation 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p. 2971–2978. IEEE (2011)
Taghvaei, S., Hirata, Y., Kosuge, K.: Control of a passive walker using a depth sensor for user state estimation 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), p. 1639–1645. IEEE (2011)
Brescianini, Dario, Jung, Jun-Young, Jang, In-Hun, Park, Hyun Sub, Robert, Riener: Ins/ekf-based stride length, height and direction intent detection for walking assistance robots 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pages 1–5. IEEE (2011)
Chan, F.H.Y., Yang, Y-S, Lam, F.K., Zhang, Y-T, Parker, P.A.: Fuzzy emg classification for prosthesis control. IEEE Trans. Rehabil. Eng. 8(3), 305–311 (2000)
Hussein, S.E., Granat, M.H.: Intention detection using a neuro-fuzzy emg classifier. IEEE Eng. Med. Biol. Mag. 21(6), 123–129 (2002)
Yokono, J., Hashimoto, S.: Center of gravity sensing for motion interface 1998 IEEE International Conference on Systems, Man, and Cybernetics, 1998, vol. 2, p. 1113–1118. IEEE (1998)
Wasson, G., Sheth, P., Huang, C., Ledoux, A., Alwan, M.: A physics-based model for predicting user intent in shared-control pedestrian mobility aids 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings, vol. 2, p. 1914–1919. IEEE (2004)
Wakita, K., Huang, J., Di, P., Sekiyama, K., Fukuda, T.: Human-walking-intention-based motion control of an omnidirectional-type cane robot. IEEE/ASME Trans. Mechatron. 18(1), 285–296 (2013)
Bello, O., Holzmann, J., Yaqoob, T., Teodoriu, C.: Application of artificial intelligence methods in drilling system design and operations: a review of the state of the art. Journal of Artificial Intelligence and Soft Computing Research 5(2), 121–139 (2015)
Raza, M.Q., Khosravi, A.: A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sust. Energ. Rev. 50, 1352–1372 (2015)
Valipour, M., Banihabib, M.E., Behbahani, S.M.R.: Comparison of the arma, arima, and the autoregressive artificial neural network models in forecasting the monthly inflow of dez dam reservoir. J. Hydrol. 476, 433–441 (2013)
Valipour, M.: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorol. Appl. 23(1), 91–100 (2016)
Valipour, M.: Sprinkle and trickle irrigation system design using tapered pipes for pressure loss adjusting. J. Agric. Sci. 4(12), 125 (2012)
Khasraghi, M.M., Sefidkouhi, M.A.G., Valipour, M.: Simulation of open-and closed-end border irrigation systems using sirmod. Arch. Agron. Soil Sci. 61(7), 929–941 (2015)
Valipour, M., Sefidkouhi, M.A.G., Eslamian, S.: Surface irrigation simulation models: a review. International Journal of Hydrology Science and Technology 5(1), 51–70 (2015)
Adȧscȧliṫei, F, Doroftei, I.: Practical applications for mobile robots based on mecanum wheels-a systematic survey. Gh. Asachi Technical University of Iasi, Mechanical Engineering Faculty, Theory of Mechanisms and Robotics Department, B-dul D, Mangeron, p. 61–63 (2011)
Wang, Y., Wang, S., Tan, R., Jiang, Y., Ishida, K., Fujie, M.G.: Improving the motion performance for an intelligent walking support machine by rls algorithm. ICIC Express Lett. 7(4), 176–177 (2013)
Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant Proceedings of the Institution of Electrical Engineers, volume 121, pages 1585–1588. IET (1974)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116–132 (1985)
Maeda, M., Murakami, S.: A self-tuning fuzzy controller. Fuzzy Sets Syst. 51(1), 29–40 (1992)
Mizumoto, M., Zimmermann, H.-J.: Comparison of fuzzy reasoning methods. Fuzzy Sets Syst. 8 (3), 253–283 (1982)
Mizumoto, M.: Fuzzy controls under various fuzzy reasoning methods. Inf. Sci. 45(2), 129–151 (1988)
Wang, S., Tsuchiya, T., Mizumoto, M.: Distance-type fuzzy reasoning method. Journal of Biomedical Fuzzy Systems Association 1(1), 61–78 (1999)
Chaudhur, B.B., Rosenfeld, A.: On a metric distance between fuzzy sets. Pattern Recogn. Lett. 17(11), 1157–1160 (1996)
Lindblad, J., Sladoje, N.: Linear time distances between fuzzy sets with applications to pattern matching and classification. IEEE Trans. Image Process. 23(1), 126–136 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Wang, Y., Wang, S. A New Directional-Intent Recognition Method for Walking Training Using an Omnidirectional Robot. J Intell Robot Syst 87, 231–246 (2017). https://doi.org/10.1007/s10846-017-0503-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-017-0503-z