Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of Intelligent & Robotic Systems
  3. Article
A New Directional-Intent Recognition Method for Walking Training Using an Omnidirectional Robot
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The effects of assistive walking robots for health care support on older persons: a preliminary field experiment in an elder care facility

10 January 2021

Tatsuya Nomura, Takayuki Kanda, … Tomohiro Suzuki

User Intention Based Intuitive Mobile Platform Control: Application to a Patient Transfer Robot

02 May 2022

Jaewoo Park, Bohyun An, … Changwon Kim

A 3D Computer Vision-Guided Robotic Companion for Non-Contact Human Assistance and Rehabilitation

21 September 2020

Tao Shen, Md Rayhan Afsar, … Xiangrong Shen

Detection of gait disorders in people with a walking disability

29 March 2022

Esmaeel Khaleghi, Hadi Soltanizadeh, … Mohammad Rahmanimanesh

Human–Robot Interaction Analysis for a Smart Walker for Elderly: The ACANTO Interactive Guidance System

25 June 2019

Francesco Ferrari, Stefano Divan, … Daniele Fontanelli

Development of a biological signal-based evaluator for robot-assisted upper-limb rehabilitation: a pilot study

01 August 2019

Bo Sheng, Lihua Tang, … Yanxin Zhang

A Proof of Concept Study for the Design, Manufacturing, and Control of a Mobile Overground Gait-Training System

19 March 2021

Lian-Wang Lee, I-Hsum Li & Ting-Wei Liang

Effects of selectively assisting impaired subtasks of walking in chronic stroke survivors

28 October 2020

Simone S. Fricke, Hilde J. G. Smits, … Edwin H. F. van Asseldonk

Real-time motion onset recognition for robot-assisted gait rehabilitation

28 January 2022

Roushanak Haji Hassani, Mathias Bannwart, … Georg Rauter

Download PDF
  • Open Access
  • Published: 23 February 2017

A New Directional-Intent Recognition Method for Walking Training Using an Omnidirectional Robot

  • Yina Wang1 &
  • Shuoyu Wang1 

Journal of Intelligent & Robotic Systems volume 87, pages 231–246 (2017)Cite this article

  • 891 Accesses

  • 8 Citations

  • 1 Altmetric

  • Metrics details

Abstract

In order to avoid being bedridden, a preemptive walking rehabilitation is essential for people who lose their walking ability because of illness or accidents. In a previous study, we developed an omnidirectional walking training robot (WTR), the effectiveness of which in rehabilitation was validated by clinical testing. In the primary stage of the walking training, the WTR guides the user to follow the predesigned therapy program to conduct the walking training. This study focuses on the later stages of training in which the user plays an active role of determining the training by himself/herself, and the WTR must follow the user’s intent. However, identifying a user’s intent is challenging. In the present study, we address this problem by introducing a directional-intent identification method based on a distance-type fuzzy reasoning algorithm. The effectiveness of the directional identification method is experimentally confirmed.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. United Nations: Home-assistant robot for an aging society. Department of Economic and Social Affairs, Population Division, World Population Prospects. Revision (2015)

  2. Chen, B.: Trends in disability in a super-aging society: Adapting the future elderly model to japan 143rd APHA Annual Meeting and Exposition (October 31-November 4, 2015). APHA, 2015

  3. Guralnik, J.M., Fried, L.P., Salive, M.E.: Disability as a public health outcome in the aging population. Annu. Rev. Public Health 17(1), 25–46 (1996)

    Article  Google Scholar 

  4. Lee, I.-M., Buchner, D.M.: The importance of walking to public health. Med. Sci. Sports Exerc. 40(7 Suppl), S512—8 (2008)

    Google Scholar 

  5. Bernhardt, J., Churilov, L., Dewey, H., Lindley, R.I., Moodie, M., Collier, J., Langhorne, P., Thrift, A.G., Donnan, G.: Statistical analysis plan (sap) for a very early rehabilitation trial (avert): an international trial to determine the efficacy and safety of commencing out of bed standing and walking training (very early mobilization) within 24 h of stroke onset vs. usual stroke unit care. Int. J. Stroke 10 (1), 23–24 (2015)

    Article  Google Scholar 

  6. Karttunen, A.H., Kallinen, M., Peurala, S.H., Häkkinen, A: Walking training and functioning among elderly persons with stroke: Results of a prospective cohort study. PM&R 7(12), 1205–1214 (2015)

    Article  Google Scholar 

  7. Pyo, S-H, Min-Gyun, O., Yoon, J-W: Development of an active haptic cane for gait rehabilitation 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 4464–4469. IEEE, p 2015

  8. Maguire, C., Sieben, J.M., Scheidhauer, H., Romkes, J., Suica, Z., de Bie, R.A.: The effect of crutches, an orthosis theratogs, and no walking aids on the recovery of gait in a patient with delayed healing post hip fracture: A case report. Physiotherapy theory and practice, p. 1–13 (2016)

  9. Mun, K.-R., Guo, Z., Yu, H.: Development and evaluation of a novel overground robotic walker for pelvic motion support 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), p. 95–100. IEEE, p 2015

  10. Walsh, C.J., Endo, K., Herr, H.: A quasi-passive leg exoskeleton for load-carrying augmentation. Int. J. Humanoid Rob. 4(03), 487–506 (2007)

    Article  Google Scholar 

  11. Kyousuke, G., Kotani, N., Hiroyuki, F., Kazuya, S., Reiko, T., Arisa, K., Satoshi, K., Kazuhiko, S., Etuji, S., Masatoshi, N., et al.: Effectiveness of the single-joint halⓇ robot suit for rehabilitation after orthopedic surgery. Physiotherapy 101, e806—e807 (2015)

    Article  Google Scholar 

  12. Gupta, A., O’Malley, M.K., Patoglu, V., Burgar, C.: Design, control and performance of ricewrist: A force feedback wrist exoskeleton for rehabilitation and training. Int. J. Robot. Res. 27(2), 233–251 (2008)

    Article  Google Scholar 

  13. Meuleman, J., van Asseldonk, E., van Oort, G., Rietman, J., van der Kooij, H.: Lopes ii—design and evaluation of an admittance controlled gait training robot with shadow-leg approach (2015)

  14. Jin, X., Cui, X., Agrawal, S.K.: Design of a cable-driven active leg exoskeleton (c-alex) and gait training experiments with human subjects 2015 IEEE International Conference on Robotics and Automation (ICRA), p. 5578–5583. IEEE (2015)

    Google Scholar 

  15. Alamdari, A., Krovi, V.: Design and analysis of a cable-driven articulated rehabilitation system for gait training. Journal of Mechanisms and Robotics (2016)

  16. Wang, Y., Wang, S., Tan, R., Jiang, Y., Ishida, K., Fujie, MG.: Motion control for an intelligent walking support machine. ICIC Express Lett. 6(1), 145–149 (2012)

    Google Scholar 

  17. Wang, S.Y., Inoue, H., Kawata, K., Inoue, Y., Nagano, M., Ino, S., Ishida, K., Kimura, T.: Developing the omni-directional mobile walker and verifying its effect of increase in the muscle power Proceedings of the JSME Symposium on Walfare Engineering, p. 176–177 (2007)

    Google Scholar 

  18. Mavroidis, C., Nikitczuk, J., Weinberg, B., Danaher, G., Jensen, K., Pelletier, P., Prugnarola, J., Stuart, R., Arango, R., Leahey, M., et al.: Smart portable rehabilitation devices. J. Neuroeng. Rehabil. 2(1), 1 (2005)

    Article  Google Scholar 

  19. Ishida, K., Wang, S.Y., Nagano, T., Kishi, T.: Development of an all-way mobile walker. J. Phys. Med. 19(4), 246–250 (2008)

    Google Scholar 

  20. Riman, C.F., Peralta, H., Monacelli, E., Alayli, Y., Hajj, A.E., Mougharbel, I.: A multi-interface platform system for assistance and evaluation of disabled people, applied bionics and biomechanics. Appl. Bionics Biomech. 8(1), 55–66 (2011)

    Article  Google Scholar 

  21. Niazi, I.K., Mrachacz-Kersting, N., Jiang, N., Dremstrup, K., Farina, D.: Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 20(4), 595–604 (2012)

    Article  Google Scholar 

  22. Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N., Kübler, A: An meg-based brain–computer interface (bci). Neuroimage 36(3), 581–593 (2007)

    Article  Google Scholar 

  23. Sorger, B., Reithler, J., Dahmen, B., Goebel, R.: A real-time fmri-based spelling device immediately enabling robust motor-independent communication. Curr. Biol. 22(14), 1333–1338 (2012)

    Article  Google Scholar 

  24. Lee, J-H, Ryu, J., Jolesz, F.A., Cho, Z-H, Yoo, S-S: Brain–machine interface via real-time fmri: preliminary study on thought-controlled robotic arm. Neurosci. Lett. 450(1), 1–6 (2009)

    Article  Google Scholar 

  25. Naseer N, Hong, K-S: fnirs-based brain-computer interfaces: a review. Frontiers in human neuroscience, 9, 2015

  26. Walter, M.R., Antone, M., Chuangsuwanich, E., Correa, A., Davis, R., Fletcher, L., Frazzoli, E., Friedman, Y., Glass, J., How, J.P., et al.: A situationally aware voice-commandable robotic forklift working alongside people in unstructured outdoor environments. J. Field Rob. 32(4), 590–628 (2015)

    Article  Google Scholar 

  27. Kofman, J., Xianghai, W., Luu, T.J., Verma, S.: Teleoperation of a robot manipulator using a vision-based human-robot interface. IEEE Trans. Ind. Electron. 52(5), 1206–1219 (2005)

    Article  Google Scholar 

  28. Bascetta, L., Ferretti, G., Rocco, P., Ardö, H, Bruyninckx, H., Demeester, E., Di Lello, E.: Towards safe human-robot interaction in robotic cells: an approach based on visual tracking and intention estimation 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p. 2971–2978. IEEE (2011)

    Google Scholar 

  29. Taghvaei, S., Hirata, Y., Kosuge, K.: Control of a passive walker using a depth sensor for user state estimation 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), p. 1639–1645. IEEE (2011)

    Google Scholar 

  30. Brescianini, Dario, Jung, Jun-Young, Jang, In-Hun, Park, Hyun Sub, Robert, Riener: Ins/ekf-based stride length, height and direction intent detection for walking assistance robots 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pages 1–5. IEEE (2011)

    Google Scholar 

  31. Chan, F.H.Y., Yang, Y-S, Lam, F.K., Zhang, Y-T, Parker, P.A.: Fuzzy emg classification for prosthesis control. IEEE Trans. Rehabil. Eng. 8(3), 305–311 (2000)

    Article  Google Scholar 

  32. Hussein, S.E., Granat, M.H.: Intention detection using a neuro-fuzzy emg classifier. IEEE Eng. Med. Biol. Mag. 21(6), 123–129 (2002)

    Article  Google Scholar 

  33. Yokono, J., Hashimoto, S.: Center of gravity sensing for motion interface 1998 IEEE International Conference on Systems, Man, and Cybernetics, 1998, vol. 2, p. 1113–1118. IEEE (1998)

    Google Scholar 

  34. Wasson, G., Sheth, P., Huang, C., Ledoux, A., Alwan, M.: A physics-based model for predicting user intent in shared-control pedestrian mobility aids 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings, vol. 2, p. 1914–1919. IEEE (2004)

    Google Scholar 

  35. Wakita, K., Huang, J., Di, P., Sekiyama, K., Fukuda, T.: Human-walking-intention-based motion control of an omnidirectional-type cane robot. IEEE/ASME Trans. Mechatron. 18(1), 285–296 (2013)

    Article  Google Scholar 

  36. Bello, O., Holzmann, J., Yaqoob, T., Teodoriu, C.: Application of artificial intelligence methods in drilling system design and operations: a review of the state of the art. Journal of Artificial Intelligence and Soft Computing Research 5(2), 121–139 (2015)

    Article  Google Scholar 

  37. Raza, M.Q., Khosravi, A.: A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sust. Energ. Rev. 50, 1352–1372 (2015)

    Article  Google Scholar 

  38. Valipour, M., Banihabib, M.E., Behbahani, S.M.R.: Comparison of the arma, arima, and the autoregressive artificial neural network models in forecasting the monthly inflow of dez dam reservoir. J. Hydrol. 476, 433–441 (2013)

    Article  Google Scholar 

  39. Valipour, M.: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorol. Appl. 23(1), 91–100 (2016)

    Article  Google Scholar 

  40. Valipour, M.: Sprinkle and trickle irrigation system design using tapered pipes for pressure loss adjusting. J. Agric. Sci. 4(12), 125 (2012)

    Google Scholar 

  41. Khasraghi, M.M., Sefidkouhi, M.A.G., Valipour, M.: Simulation of open-and closed-end border irrigation systems using sirmod. Arch. Agron. Soil Sci. 61(7), 929–941 (2015)

    Article  Google Scholar 

  42. Valipour, M., Sefidkouhi, M.A.G., Eslamian, S.: Surface irrigation simulation models: a review. International Journal of Hydrology Science and Technology 5(1), 51–70 (2015)

    Article  Google Scholar 

  43. Adȧscȧliṫei, F, Doroftei, I.: Practical applications for mobile robots based on mecanum wheels-a systematic survey. Gh. Asachi Technical University of Iasi, Mechanical Engineering Faculty, Theory of Mechanisms and Robotics Department, B-dul D, Mangeron, p. 61–63 (2011)

  44. Wang, Y., Wang, S., Tan, R., Jiang, Y., Ishida, K., Fujie, M.G.: Improving the motion performance for an intelligent walking support machine by rls algorithm. ICIC Express Lett. 7(4), 176–177 (2013)

    Google Scholar 

  45. Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant Proceedings of the Institution of Electrical Engineers, volume 121, pages 1585–1588. IET (1974)

    Google Scholar 

  46. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116–132 (1985)

    Article  MATH  Google Scholar 

  47. Maeda, M., Murakami, S.: A self-tuning fuzzy controller. Fuzzy Sets Syst. 51(1), 29–40 (1992)

    Article  Google Scholar 

  48. Mizumoto, M., Zimmermann, H.-J.: Comparison of fuzzy reasoning methods. Fuzzy Sets Syst. 8 (3), 253–283 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mizumoto, M.: Fuzzy controls under various fuzzy reasoning methods. Inf. Sci. 45(2), 129–151 (1988)

    Article  MathSciNet  Google Scholar 

  50. Wang, S., Tsuchiya, T., Mizumoto, M.: Distance-type fuzzy reasoning method. Journal of Biomedical Fuzzy Systems Association 1(1), 61–78 (1999)

    Google Scholar 

  51. Chaudhur, B.B., Rosenfeld, A.: On a metric distance between fuzzy sets. Pattern Recogn. Lett. 17(11), 1157–1160 (1996)

    Article  Google Scholar 

  52. Lindblad, J., Sladoje, N.: Linear time distances between fuzzy sets with applications to pattern matching and classification. IEEE Trans. Image Process. 23(1), 126–136 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Systems Engineering, Kochi University of Technology, Kami, Kochi, Japan

    Yina Wang & Shuoyu Wang

Authors
  1. Yina Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Shuoyu Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yina Wang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, S. A New Directional-Intent Recognition Method for Walking Training Using an Omnidirectional Robot. J Intell Robot Syst 87, 231–246 (2017). https://doi.org/10.1007/s10846-017-0503-z

Download citation

  • Received: 28 July 2016

  • Accepted: 26 January 2017

  • Published: 23 February 2017

  • Issue Date: August 2017

  • DOI: https://doi.org/10.1007/s10846-017-0503-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.