Skip to main content
Log in

Real-Time Path Generation and Obstacle Avoidance for Multirotors: A Novel Approach

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Multirotors, among all aerial vehicles, are fundamental instruments in many situations, i.e. video recording of sport events, leisure, environmental monitoring before or after a disaster. In particular, in the context of environmental monitoring, the possibility of following a predetermined path while avoiding obstacles is extremely relevant. In this work, we propose a novel method for path definition in presence of obstacles, which describes a curve as the intersection of two surfaces. The planner, based on that path definition along with a Cascaded control architecture and utilizing a nonlinear control technique for both control loops (position and attitude), creates a framework to manipulate the multicopters’ behaviors. The method is demonstrated to be able to generate a safe path taking into account obstacles perceived in real-time and avoids collisions. These algorithms are embedded in a software package to control the flight of a fully autonomous AscTec Firefly hexacopter with two cameras and onboard processing capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pratt, K.S., Murphy, R., Stover, S., Griffin, C.: CONOPS and autonomy recommendations for VTOL small unmanned aerial system based on Hurricane Katrina operations. J. Field Rob. 26(8), 636–650 (2009)

    Article  Google Scholar 

  2. Murphy, R.R., Steimle, E., Griffin, C., Cullins, C., Hall, M., Pratt, K.: Cooperative use of unmanned sea surface and micro aerial vehicles at Hurricane Wilma. J. Field Rob. 25(3), 164–180 (2008)

    Article  Google Scholar 

  3. Baiocchi, V., Dominici, D., Milone, M.V., Mormile, M.: Development of a software to plan UAVs stereoscopic flight: An application on post earthquake scenario in L’Aquila city In: Computational Science and Its Applications-ICCSA 2013, pp. 150–165. Springer, Berlin Heidelberg (2013)

    Google Scholar 

  4. Qi, J., Song, D., Shang, H., Wang, N., Hua, C., Wu, C., Han, J.: Search and Rescue Rotary-Wing UAV and Its Application to the Lushan Ms 7.0 Earthquake. J. Field Rob. (2015)

  5. Recchiuto, C.T., Sgorbissa, A., Zaccaria, R: Visual feedback with multiple cameras in a UAVs Human-Swarm Interface. Robot. Auton. Syst. 80, 43–54 (2016)

    Article  Google Scholar 

  6. Apvrille, L., Roudier, Y., Tanzi, T.J.: Autonomous drones for disasters management: Safety and security verifications In: 2015 1st 1000 URSI Atlantic Radio Science Conference (URSI AT-RASC), pp. 1–2. IEEE (2015)

    Google Scholar 

  7. Ramírez, A., Espinoza, E.S., Carrillo, L.R.G., Mondie, S., Lozano, R.: Stability analysis of a vision-based UAV controller for autonomous road following missions In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1135–1143. IEEE (2013)

    Google Scholar 

  8. Bouabdallah, S.: Design and control of quadrotors with application to autonomous flying. (Doctoral dissertation, Ecole Polytechnique Federale de Lausanne) (2007)

    Google Scholar 

  9. Altuğ, E., Ostrowski, J.P., Mahony, R.: Control of a quadrotor helicopter using visual feedback In: Proceedings of the International Conference on Robotics and Automation, 2002, ICRA’02. IEEE Vol. 1, pp. 72–77. IEEE (2002)

    Google Scholar 

  10. Mistler, V., Benallegue, A., M’sirdi, N.K.: Exact linearization and noninteracting control of a 4 rotors helicopter via dynamic feedback In: Proceedings of the 10th IEEE International Workshop on Robot and Human Interactive Communication, 2001, pp. 586–593. IEEE (2001)

    Google Scholar 

  11. Xu, R., Özgüner, Ü: Sliding mode control of a quadrotor helicopter In: 2006 45th IEEE Conference on Decision and Control, pp. 4957-4962. IEEE (2006)

    Google Scholar 

  12. Bouffard, P., Aswani, A., Tomlin, C.: Learning-based model predictive control on a quadrotor: Onboard implementation and experimental results In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 279-284). IEEE (2012)

    Google Scholar 

  13. Alexis, K., Papachristos, C., Nikolakopoulos, G., Tzes, A.: Model predictive quadrotor indoor position control In: 2011 19th Mediterranean Conference on Control & Automation (MED), pp. 1247–1252. IEEE (2011)

    Google Scholar 

  14. Bangura, M., Mahony, R.: Real-time model predictive control for quadrotors (2014)

  15. Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–516 (2004)

    Article  Google Scholar 

  16. Achtelik, M., Bierling, T., Wang, J., Hocht, L., Holzapfel, F.: Adaptive Control of a Quadcopter in the Presence of large/complete Parameter Uncertainties. Infotech Aerospace, 2011–1485 (2011)

  17. Achtelik, M.W., Lynen, S., Chli, M., Siegwart, R.: Inversion based direct position control and trajectory following for micro aerial vehicles In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2933-2939. IEEE (2013)

    Google Scholar 

  18. Kim, H.J., Shim, D.H: A flight control system for aerial robots: algorithms and experiments. Control. Eng. Pract. 11(12), 1389–1400 (2003)

    Article  Google Scholar 

  19. Tabatabaei, S.A.H., Yousefi-Koma, A., Ayati, M., Mohtasebi, S.S.: Three dimensional fuzzy carrot-chasing path following algorithm for fixed-wing vehicles In: 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), pp. 784-788. IEEE (2015)

    Google Scholar 

  20. Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–1379 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frazzoli, E., Dahleh, M.A., Feron, E.: Trajectory tracking control design for autonomous helicopters using a backstepping algorithm In: Proceedings of the American Control Conference, 2000, Vol. 6, pp. 4102–4107. IEEE (2000)

    Google Scholar 

  22. Nelson, D.R., Barber, D.B., McLain, T.W., Beard, R.W.: Vector field path following for miniature air vehicles. IEEE Trans. Robot. 23(3), 519–529 (2007)

    Article  Google Scholar 

  23. Kothari, M., Postlethwaite, I., Gu, D.W.: UAV path following in windy urban environments. J. Intell. Robot. Syst. 74(3–4), 1013–1028 (2014)

    Article  Google Scholar 

  24. Osborne, J., Rysdyk, R.: Waypoint guidance for small UAVs in wind. AIAA Infotech Aerospace 193(1–4), 1–12 (2005)

    Google Scholar 

  25. Alexis, K., Nikolakopoulos, G., Tzes, A.: On trajectory tracking model predictive control of an unmanned quadrotor helicopter subject to aerodynamic disturbances. Asian J. Control 16(1), 209–224 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rezaee, H., Abdollahi, F.: Adaptive artificial potential field approach for obstacle avoidance of unmanned aircrafts In: 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1-6 IEEE (2012)

    Google Scholar 

  27. Nieuwenhuisen, M., Droeschel, D., Schneider, J., Holz, D., Labe, T., Behnke, S.: Multimodal obstacle detection and collision avoidance for micro aerial vehicles In: 2013 European Conference on Mobile Robots (ECMR), pp. 7–12. IEEE (2013)

    Google Scholar 

  28. Achtelik, M.W., Weiss, S., Chli, M., Siegwart, R.: Path planning for motion dependent state estimation on micro aerial vehicles In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3926-3932). IEEE (2013)

    Google Scholar 

  29. Webb, D.J., van den Berg, J.: Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 5054-5061. IEEE (2013)

  30. He, R., Prentice, S., Roy, N.: Planning in information space for a quadrotor helicopter in a GPS-denied environment In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp. 1814-1820). IEEE (2008)

    Google Scholar 

  31. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2520-2525. IEEE (2011)

    Google Scholar 

  32. Vista IV, F.P., Singh, A.M., Lee, D.J., Chong, K.T.: Design convergent Dynamic Window Approach for quadrotor navigation. Int. J. Precis. Eng. Manuf. 15(10), 2177–2184 (2014)

    Article  Google Scholar 

  33. Mullhaupt, P., Srinivassn, B., Bonvin, D.: A Two-time-scale Controller for a Differentially Cross-coupled System In: Proceedings of the American Control Conference, 1997, Vol. 6, pp. 3839-3841. IEEE (1997)

    Google Scholar 

  34. Wagner, K.G.: Nonlinear noninteraction with stability by dynamic state feedback. SIAM J. Control. Optim. 29(3), 609–622 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Murray, R.M., Li, Z., Sastry, S.S., Sastry, S.S.: A mathematical introduction to robotic manipulation. CRC press (1994)

  36. Khalil, H.K., Grizzle, J.W.: Nonlinear systems, vol. 3. Prentice hall, New Jersey (1996)

  37. Schmitendorf, W.E., Stalford H. L.: Improving Stability Margins via Dynamic-State Feedback for Systems with Constant Uncertainty. IEEE Trans. Automat. Contr. 42, 1161–1163 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, C., Fu, M.: A Revisit to the Gain and Phase Margins of Linear Quadratic Regulators. IEEE Trans. Automat. Contr. 41, 1527–1530 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Morro, A., Sgorbissa, A., Zaccaria, R.: Path following for unicycle robots with an arbitrary path curvature. IEEE Trans. Robot. 27(5), 1016–1023 (2011)

    Article  Google Scholar 

  40. Sgorbissa, A., Zaccaria, R.: 3D path following with no bounds on the path curvature through surface intersection In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4029- 4035. IEEE (2010)

    Google Scholar 

  41. Planning, Integrated Robot, Avoidance, Obstacle: Path Following and Control in 2D and 3D: a case study with UGV, UUV, and UAV. Submitted to The International Journal of Robotics Research (2016)

  42. Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to autonomous mobile robots. MIT press (2011)

  43. Simulink, M., Natick, M.A.: The Mathworks (1993)

  44. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (IROS 2004), Vol. 3, pp. 2149-2154. IEEE (2004)

    Google Scholar 

  45. Furrer, F., Burri, M., Achtelik, M., Siegwart, R.: RotorS. A Modular Gazebo MAV Simulator Framework In: Robot Operating System (ROS), pp. 595-625. Springer International Publishing (2016)

    Google Scholar 

  46. Piaggio, M., Sgorbissa, A., Zaccaria, R: A programming environment for real-time control of distributed multiple robotic systems. Adv. Robot. 14(1), 75–86 (2000)

    Article  MATH  Google Scholar 

  47. Recchiuto, C., Sgorbissa, A., Wanderlingh, F., Zaccaria, R.: UAV Teams In Emergency Scenarios: A Summary Of The Work Within The Project PRISMA In: Proceedings of the 2nd Italian Workshop on Artificial Intelligence and Robotics. CEUR Workshop. Vol. 1544. Ferrara, Italy (2015)

    Google Scholar 

  48. Munoz-Salinas, R.: ARUCO: a minimal library for Augmented Reality applications based on OpenCv. Universidad de Cordoba (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine T. Recchiuto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

H. Nguyen, P.D., Recchiuto, C.T. & Sgorbissa, A. Real-Time Path Generation and Obstacle Avoidance for Multirotors: A Novel Approach. J Intell Robot Syst 89, 27–49 (2018). https://doi.org/10.1007/s10846-017-0478-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0478-9

Keywords

Mathematics Subject Classification (2010)

Navigation