Skip to main content
Log in

Algorithms for Heterogeneous, Multiple Depot, Multiple Unmanned Vehicle Path Planning Problems

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Unmanned vehicles, both aerial and ground, are being used in several monitoring applications to collect data from a set of targets. This article addresses a problem where a group of heterogeneous aerial or ground vehicles with different motion constraints located at distinct depots visit a set of targets. The vehicles also may be equipped with different sensors, and therefore, a target may not be visited by any vehicle. The objective is to find an optimal path for each vehicle starting and ending at its respective depot such that each target is visited at least once by some vehicle, the vehicle–target constraints are satisfied, and the sum of the length of the paths for all the vehicles is minimized. Two variants of this problem are formulated (one for ground vehicles and another for aerial vehicles) as mixed-integer linear programs and a branch-and-cut algorithm is developed to compute an optimal solution to each of the variants. Computational results show that optimal solutions for problems involving 100 targets and 5 vehicles can be obtained within 300 seconds on average, further corroborating the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frew, E.W., Brown, T.X.: Networking issues for small unmanned aircraft systems. J. Intell. Robot. Syst. 54, 21–37 (2009)

    Article  Google Scholar 

  2. Curry, J.A., Maslanik, J., Holland, G., Pinto, J.: Applications of aerosondes in the arctic. Bull. Amer. Meteorol. Soc. 85(12), 1855–1861 (2004)

    Article  Google Scholar 

  3. Zajkowski, E.J.T., Dunagan S: Small UAS communications mission. In: Eleventh Biennial USDA Forest Service Remote Sensing Applications Conference. Salt Lake City (2006)

  4. Levy, D., Sundar, K., Rathinam, S.: Heuristics for routing heterogeneous unmanned vehicles with fuel constraints. Math. Prob. Eng. (2014)

  5. Sundar, K., Venkatachalam, S., Rathinam, S.: Formulations and algorithms for the multiple depot, fuel-constrained, multiple vehicle routing problem. In: 2016 American Control Conference (ACC), pp. 6489–6494 (2016)

  6. Reeds, J., Shepp, L.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145(2), 367–393 (1990)

    Article  MathSciNet  Google Scholar 

  7. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Amer. J. Math. 79(3), 497–516 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benavent, E., Martínez, A.: Multi-depot Multiple TSP: A polyhedral study and computational results. Ann. Oper. Res. 207(1), 7–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lawler, E.L., Lenstra, J.K., Kan, A.R., Shmoys, D.B.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, vol. 3. New York, Wiley (1985)

    MATH  Google Scholar 

  10. Sundar, K., Rathinam, S.: Generalized multiple depot traveling salesmen problem–polyhedral study and exact algorithm. Comput. Oper. Res. 70, 39–55 (2016)

    Article  MathSciNet  Google Scholar 

  11. Kara, I., Bektas, T.: Integer linear programming formulations of multiple salesman problems and its variations. Eur. J. Oper. Res. 174(3), 1449–1458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bektas, T.: The multiple traveling salesman problem: An overview of formulations and solution procedures. Omega 34(3), 209–219 (2006)

    Article  MathSciNet  Google Scholar 

  13. Gavish, B., Srikanth, K.: An optimal solution method for large-scale multiple traveling salesmen problems. Oper. Res. 34(5), 698–717 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tang, Z., Ozguner, U.: Motion planning for multitarget surveillance with mobile sensor agents. IEEE Trans. Robot. 21(5), 898–908 (2005)

    Article  Google Scholar 

  15. Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Trans. Autom. Sci. Eng. 4(1), 98–104 (2007)

    Article  Google Scholar 

  16. Savla, K., Frazzoli, E., Bullo, F.: Traveling salesperson problems for the dubins vehicle. IEEE Trans. Autom. Control 53(6), 1378–1391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Le Ny, J., Feron, E., Frazzoli, E.: On the dubins traveling salesman problem. IEEE Trans. Autom. Contr. 57(1), 265–270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Manyam, S.G., Rathinam, S., Darbha, S.: Computation of lower bounds for a multiple depot, multiple vehicle routing problem with motion constraints. J. Dyn. Syst. Measur. Control 137(9), 094501 (2015)

    Article  Google Scholar 

  19. Manyam, S., Rathinam, S.: On tightly bounding the dubins traveling salesmans optimum. arXiv preprint (2015)

  20. Laporte, G., Nobert, Y., Taillefer, S.: Solving a family of multi-depot vehicle routing and location-routing problems. Transp. Sci. 22(3), 161–172 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Baldacci, R., Mingozzi, A.: A unified exact method for solving different classes of vehicle routing problems. Mathem. Program. 120(2), 347–380 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Taillard, É.D.: A heuristic column generation method for the heterogeneous fleet VRP. RAIRO-Oper. Res. 33(01), 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Baldacci, R., Battarra, M., Vigo, D.: Routing a heterogeneous fleet of vehicles, in The vehicle routing problem: Latest advances and new challenges. Springer, 3–27 (2008)

  24. Nag, B., Golden, B.L., Assad, A.: Vehicle routing with site dependencies. Veh. Rout. Methods Stud., 149–159 (1988)

  25. Chao, I.-M., Golden, B.L., Wasil, E.A.: A new algorithm for the site-dependent vehicle routing problem, in Advances in computational and stochastic optimization, logic programming, and heuristic search. Springer, 301–312 (1998)

  26. Doshi, R., Yadlapalli, S., Rathinam, S., Darbha, S.: Approximation algorithms and heuristics for a 2-depot, heterogeneous hamiltonian path problem. Int. J. Robust Nonlin. Control 21(12), 1434–1451 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization, vol. 18. Wiley, New York (1988)

    MATH  Google Scholar 

  28. Labbé, M., Laporte, G., Martín, I.R., González, J.J.S.: The ring star problem: Polyhedral analysis and exact algorithm. Networks 43(3), 177–189 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sussmann, H.J., Tang, G.: Shortest paths for the reeds-shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control. Rutgers Center Syst. Control Tech. Report 10, 1–71 (1991)

    Google Scholar 

  30. Toth, P., Vigo, D.: The Vehicle Routing Problem. Siam (2001)

  31. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The traveling salesman problem: A computational study. Princeton University Press (2011)

  32. Sundar, K., Rathinam, S.: An exact algorithm for a heterogeneous, multiple depot, multiple traveling salesman problem. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 366–371. IEEE (2015)

  33. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Oper. Res. 7(1), 67–80 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fischetti, M., Salazar Gonzalez, J.J., Toth, P.: A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Oper. Res. 45(3), 378–394 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sundar, K., Rathinam, S.: Multiple depot ring star problem: A polyhedral study and an exact algorithm. J. Global Optim., 1–25 (2016)

  37. Reinelt, G.: TSPLIB - a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaarthik Sundar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundar, K., Rathinam, S. Algorithms for Heterogeneous, Multiple Depot, Multiple Unmanned Vehicle Path Planning Problems. J Intell Robot Syst 88, 513–526 (2017). https://doi.org/10.1007/s10846-016-0458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0458-5

Keywords

Navigation