Skip to main content

Advertisement

Log in

A Novel Practical Technique to Integrate Inequality Control Objectives and Task Transitions in Priority Based Control

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The task priority based control is a formalism which allows to create complex control laws with nice invariance properties, i.e. lower priority tasks do not affect the execution of higher priority ones. However, the classical task priority framework (Siciliano and Slotine) lacked the ability of enabling and disabling tasks without causing discontinuities. Furthermore, tasks corresponding to inequality control objectives could not be efficiently represented within that framework. In this paper we present a novel technique to integrate both the activation and deactivation of tasks and the inequality control objectives in the priority based control. The technique, called iCAT (inequality control objectives, activations and transitions) task priority framework, exploits novel regularization methods to activate and deactivate any row of a given task in a prioritized hierarchy without incurring in practical discontinuities, while maintaining as much as possible the invariance properties of the other active tasks. Finally, as opposed to other techniques, the proposed approach has a linear cost in the number of tasks. Simulations, experimental results and a time analysis are presented to support the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonelli, G.: Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems. IEEE Trans. Robot. 25(5), 985–994 (2009)

    Article  Google Scholar 

  2. Antonelli, G., Arrichiello, F., Chiaverini, S.: The null-space-based behavioral control for autonomous robotic systems. Intell. Serv. Robot. 1(1), 27–39 (2008)

    Article  Google Scholar 

  3. Antonelli, G., Chiaverini, S.: Task-priority redundancy resolution for underwater vehicle-manipulator systems. In: Proceedings of the IEEE International Conference on Robotics and Automation. doi:10.1109/ROBOT.1998.677070, vol. 1, pp 768–773. Leuven, Belgium (1998)

  4. Antonelli, G., Chiaverini, S.: Fuzzy redundancy resolution and motion coordination for underwater vehicle-manipulator systems. IEEE Trans. Fuzzy Syst. 11(1), 109–120 (2003). doi:10.1109/TFUZZ.2002.806321

    Article  Google Scholar 

  5. Antonelli, G., Indiveri, G., Chiaverini, S.: Prioritized closed-loop inverse kinematic algorithms for redundant robotic systems with velocity saturations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp 5892– 5897 (2009)

  6. Antonelli, G., Moe, S., Pettersen, K.: Incorporating set-based control within the singularity-robust multiple task-priority inverse kinematics. In: 23th Mediterranean Conference on Control and Automation, pp 1132–1137. Torremolinos, Spain (2015)

  7. Baerlocher, P., Boulic, R.: An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. Vis. Comput. 20(6), 402–417 (2004)

    Article  Google Scholar 

  8. Ben-Israel, A., Greville, T.: Generalized Inverses: Theory and Applications, vol. 15. Springer (2003)

  9. Borst, C., Wimbock, T., Schmidt, F., Fuchs, M., Brunner, B., Zacharias, F., Giordano, P.R., Konietschke, R., Sepp, W., Fuchs, S., Rink, C., Albu-Schaffer, A., Hirzinger, G.: Rollin’ Justin - mobile platform with variable base. In: IEEE International Conference on Robotics and Automation, pp 1597–1598 (2009)

  10. Casalino, G., Caccia, M., Caiti, A., Antonelli, G., Indiveri, G., Melchiorri, C., Caselli, S.: Maris: a national project on marine robotics for interventions. In: 22Nd Mediterranean Conference of Control and Automation (MED), 2014, pp. 864–869. IEEE (2014)

  11. Casalino, G., Turetta, A., Sorbara, A., Simetti, E.: Self-organizing control of reconfigurable manipulators: a distributed dynamic programming based approach. In: ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2009), pp 632–640. UK, London (2009)

  12. Casalino, G., Zereik, E., Simetti, E., Torelli, S., Sperindé, A., Turetta, A.: Agility for underwater floating manipulation task and subsystem priority based control strategy. In: International Conference on Intelligent Robots and Systems (IROS 2012). doi:10.1109/IROS.2012.6386127, pp 1772–1779. Vilamoura, Portugal (2012)

  13. Casalino, G., Zereik, E., Simetti, E., Torelli, S., Sperindé, A., Turetta, A.: A task and subsystem priority based control strategy for underwater floating manipulators. In: IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles (NGCUV 2012). doi:10.3182/20120410-3-PT-4028.00029, pp 170–177. Porto, Portugal (2012)

  14. Cheng, G., Hyon, S., Morimoto, J., Ude, A., Hale, J.G., Colvin, G., Scroggin, W., Jacobsen, S.C.: Cb: a humanoid research platform for exploring neuroscience. Adv. Robot. 21(10), 1097–1114 (2007)

    Article  Google Scholar 

  15. Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans. Robot. Autom. 13(3), 398–410 (1997). doi:10.1109/70.585902

    Article  Google Scholar 

  16. Decre, W., Smits, R., Bruyninckx, H., De Schutter, J.: Extending iTaSC to support inequality constraints and non-instantaneous task specification. In: IEEE International Conference on Robotics and Automation, pp 964–971. Kobe, Japan (2009)

  17. Diftler, M.A., Mehling, J.S., Abdallah, M.E., Radford, N.A., Bridgwater, L.B., Sanders, A.M., Askew, R.S., Linn, D.M., Yamokoski, J.D., Permenter, F.A., Hargrave, B.K., Platt, R., Savely, R.T., Ambrose, R.O.: Robonaut 2 - the first humanoid robot in space. In: IEEE International Conference on Robotics and Automation, pp. 2178– 2183 (2011)

  18. Doty, K.L., Melchiorri, C., Bonivento, C.: Theory of generalized inverses applied to robotics. Int. J. Robot. Res. 12(1), 1–19 (1993)

    Article  Google Scholar 

  19. Escande, A., Mansard, N., Wieber, P.B.: Hierarchical quadratic programming: fast online humanoid-robot motion generation. Int. J. Robot. Res. 33(7), 1006–1028 (2014). doi:10.1177/0278364914521306

    Article  Google Scholar 

  20. Faverjon, B., Tournassoud, P.: A local based approach for path planning of manipulators with a high number of degrees of freedom. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp 1152–1159. Raleigh, NC, USA (1987)

  21. Fink, J., Michael, N., Kim, S., Kumar, V.: Planning and control for cooperative manipulation and transportation with aerial robots. Int. J. Robot. Res. 30(3), 324– 334 (2011)

    Article  MATH  Google Scholar 

  22. Flacco, F., De Luca, A.: A reverse priority approach to multi-task control of redundant robots. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (2014)

  23. Kanoun, O., Lamiraux, F., Wieber, P.B.: Kinematic control of redundant manipulators: generalizing the task-priority framework to inequality task. IEEE Trans. Robot. 27(4), 785–792 (2011)

    Article  Google Scholar 

  24. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5 (1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  25. Khatib, O.: A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)

    Article  Google Scholar 

  26. Lane, D.M., Davies, J.B.C., Casalino, G., Bartolini, G., Cannata, G., Veruggio, G., Canals, M., Smith, C., O’Brien, D.J., Pickett, M., Robinson, G., Jones, D., Scott, E., Ferrara, A., Angelleti, D., Coccoli, M., Bono, R., Virgili, P., Pallas, R., Gracia, E.: Amadeus: advanced manipulation for deep underwater sampling. IEEE Robot. Autom. Mag. 4(4), 34–45 (1997)

    Article  Google Scholar 

  27. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems, vol. 161. SIAM (1974)

  28. Lee, J., Mansard, N., Park, J.: Intermediate desired value approach for task transition of robots in kinematic control. IEEE Trans. Robot. 28(6), 1260–1277 (2012)

    Article  Google Scholar 

  29. Macjeiesky, A.A., Klein, C.A.: Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Int. J. Robot. Res. 4(5), 109–117 (1985)

    Article  Google Scholar 

  30. Manerikar, N., Casalino, G., Simetti, E., Torelli, S., Sperindé, A.: On autonomous cooperative underwater floating manipulation systems. In: International Conference on Robotics and Automation (ICRA 15). doi:10.1109/ICRA.2015.7139229, pp 523–528. WA, Seattle (2015)

  31. Mansard, N., Khatib, O., Kheddar, A.: A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Trans. Robot. 25(3), 670–685 (2009)

    Article  Google Scholar 

  32. Mansard, N., Remazeilles, A., Chaumette, F.: Continuity of varying-feature-set control laws. IEEE Trans. Autom. Control 54(11), 2493–2505 (2009)

    Article  MathSciNet  Google Scholar 

  33. Marani, G., Choi, S.K., Yuh, J.: Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng. 36, 15–23 (2008)

    Article  Google Scholar 

  34. Marani, G., Kim, J., Yuh, J., Chung, W.K.: A real-time approach for singularity avoidance in resolved motion rate control of robotic manipulators. In: Proceedings of the IEEE International Conference on Robotics and Automation ICRA ’02. doi:10.1109/ROBOT.2002.1014830, vol. 2, pp 1973–1978 (2002)

  35. Marani, G., Kim, J., Yuh, J., Chung, W.K.: Algorithmic singularities avoidance in task-priority based controller for redundant manipulators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003, vol. 4, pp. 3570–3574 vol. 3. doi:10.1109/IROS.2003.1249709 (2003)

  36. Nakamura, Y.: Advanced Robotics: Redundancy and Optimization. Addison Wesley (1991)

  37. Nakamura, Y., Hanafusa, H.: Inverse kinematic solutions with singularity robustness for robot manipulator control. J. Dyn. Syst. Meas. Control. 108(3), 163– 171 (1986)

    Article  MATH  Google Scholar 

  38. Nenchev, D., Sotirov, Z.: Dynamic task-priority allocation for kinematically redundant robotic mechanisms. In: IEEE/RSJ/GI International Conference on Intelligent Robots and Systems(IROS 94). doi:10.1109/IROS.1994.407429, vol. 1, pp 518–524 (1994)

  39. Padir, T.: Kinematic redundancy resolution for two cooperating underwater vehicles with on-board manipulators. In: Proceedings of the IEEE International Systems, Man and Cybernetics Conference, vol. 4, pp 3137–3142. Waikolo, HI, USA (2005)

  40. Sanz, P., Ridao, R., Oliver, G., Casalino, P., Insaurralde, C., Silvestre, C., Melchiorri, M., Turetta, A.: Trident: recent improvements about autonomous underwater intervention missions. In: Proceedings of the IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles (NGCUV2012), Porto, Portugal (2012)

  41. Sentis, L., Khatib, O.: Control of free-floating humanoid robots through task prioritization. In: Proceedings of the 2005 IEEE International Conference on Robotics Andamp; Automation, pp 1718–1723. Barcelona , Spain (2005)

  42. Siciliano, B., Slotine, J.J.E.: A general framework for managing multiple tasks in highly redundant robotic systems. In: Proceedings of the Fifth International Advanced Robotics ’Robots in Unstructured Environments’, 91 ICAR. Conference, pp 1211–1216. Pisa, Italy (1991)

  43. Simetti, E., Casalino, G.: Whole body control of a dual arm underwater vehicle manipulator system. Annu. Rev. Control. (2015). doi:10.1016/j.arcontrol.2015.09.011 . Accepted

  44. Simetti, E., Casalino, G., Manerikar, N., Torelli, S., Sperindé, A., Wanderlingh, F.: Cooperation between autonomous underwater vehicle manipulations systems with minimal information exchange. In: IEEE/MTS OCEANS 2015. Genova, Italy (2015)

  45. Simetti, E., Casalino, G., Torelli, S., Sperindé, A., Turetta, A.: Floating underwater manipulation: developed control methodology and experimental validation within the trident project. J. Field Rob. 31(3), 364–385 (2014). doi:10.1002/rob.21497

    Article  Google Scholar 

  46. Simetti, E., Casalino, G., Torelli, S., Sperindé, A., Turetta, A.: Underwater floating manipulation for robotic interventions. In: IFAC World Congress 2014, pp. 3358–3363. doi:10.3182/20140824-6-ZA-1003.00503 (2014)

  47. Simetti, E., Turetta, A., Casalino, G.: Distributed control and coordination of cooperative mobile manipulator systems. In: Asama, H., Kurokawa, H., Ota, J., Sekiyama, K. (eds.) Distributed Autonomous Robotic Systems 8, pp 315–324. Springer, Berlin (2009), 10.1007/978-3-642-00644-9_28

  48. Sugiura, H., Gienger, M., Janssen, H., Goerick, C.: Real-time collision avoidance with whole body motion control for humanoid robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 2007, pp 2053–2058. USA, San Diego, CA (2007)

  49. Wampler, C.W.: Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Trans. Syst. Man Cybern. 16(1), 93–101 (1986)

    Article  MATH  Google Scholar 

  50. Yoshikawa, T.: Analysis and control of robot manipulators with redundancy. In: Brady, M., Paul, R. (eds.) Robotic Research: the First International Symposium, pp 735–747. MIT Press (1984)

  51. Zereik, E., Sorbara, A., Merlo, A., Simetti, E., Casalino, G., Didot, F.: Space robotics supporting exploration missions: vision, force control and coordination strategy for crew assistants. Intell. Serv. Robot. 4(1), 39–60 (2011). doi:10.1007/s11370-010-0084-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Simetti.

Additional information

This work has been supported by the MIUR (Ministry of Education, University and Research) through the MARIS prot. 2010FBLHRJ project and by the European Commission through H2020-BG-06-2014-635491 DexROV project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simetti, E., Casalino, G. A Novel Practical Technique to Integrate Inequality Control Objectives and Task Transitions in Priority Based Control. J Intell Robot Syst 84, 877–902 (2016). https://doi.org/10.1007/s10846-016-0368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0368-6

Keywords

Navigation