Skip to main content
Log in

Experimental Implementation of a Leader-Follower Strategy for Quadrotors Using a Distributed Architecture

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper deals with a distributed experimental implementation of a leader-follower coordination scheme using quadrotors. A set of inter-agent distances defines the position of the followers about the leader. The desired position of each agent is kept using a robust local nonlinear controller in combination with a distributed trajectory generator. The distributed implementation comes from the fact that each quadrotor has an onboard digital processor to compute its control algorithm, and there is a wireless communication channel between the leader and the followers. Real-time experiments show the performance of the distributed leader-follower strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Hiddabi, S.: Quadrotor control using feedback linearization with dynamic extension. In: 6th International Symposium on Mechatronics and its Applications, 2009. ISMA’09, pp. 1–3. IEEE (2009)

  2. Astolfi, A., Karagiannis, D., Ortega, R.: Nonlinear and Adaptive Control with Applications. Communications and Control Engineering. Springer (2007)

  3. Bayezit, I., Fidan, B.: Distributed cohesive motion control of flight vehicle formations. IEEE Trans. Ind. Electron. 60(12), 5763–5772 (2013)

    Article  Google Scholar 

  4. Castillo, P., Lozano, R., Dzul, A.: Stabilization of a mini rotorcraft with four rotors. IEEE Control. Syst. Mag. 25(6), 45–55 (2005)

    Article  MathSciNet  Google Scholar 

  5. Chamseddine, A., Zhang, Y., Rabbath, C.A., Join, C., Theilliol, D.: Flatness-based trajectory planning/replanning for a quadrotor unmanned aerial vehicle. IEEE Trans. Aerosp. Electron. Syst. 48(4), 2832–2848 (2012)

    Article  MATH  Google Scholar 

  6. Corona-Sanchez, J.J., Vargas-Jacob, J.A., Rodriguez-Cortes, H.: Decentralized real time implementation of a leader-follower coordination strategy for quadrotors. In: International Conference on Unmanned Aircraft Systems (ICUAS), 2014, pp. 237–243 (2014)

  7. Castro, R., Mercado, D.A., Lozano, R.: Quadrotors flight formation control using a leader-follower approach. In: 2013 European Control Conference (ECC), pp. 3858–3863 (2013)

  8. Do, K.D.: Formation tracking control of unicycle-type mobile robots with limited sensing ranges. IEEE Trans. Control Syst. Technol. 16(3), 527–538 (2008)

    Article  Google Scholar 

  9. Estrada, S.A., Liceaga-Castro, E., Rodriguez-Cortes, H.: Nonlinear motion control of a rotary wing vehicle powered by four rotors. In: 3rd International Conference on Electrical and Electronics Engineering, 2006, pp. 1–6. IEEE (2006)

  10. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  11. Guadarrama-Olvera, J.R., Corona-Sánchez, J.J., Rodríguez-Cortés, H.: Hard real-time implementation of a nonlinear controller for the quadrotor helicopter. J. Intell. Robot. Syst. 73(1–4), 81–97 (2014)

    Article  Google Scholar 

  12. Guenard, N., Hamel, T., Mahony, R.: A practical visual servo control for an unmanned aerial vehicle. IEEE Trans. Robot. 24(2), 331–340 (2008)

    Article  Google Scholar 

  13. Hamel, T., Mahony, R., Lozano, R., Ostrowski, J.: Dynamic modelling and configuration stabilization for an x4-flyer. a a 1(2), 3 (2002)

    Google Scholar 

  14. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language for embedded programming. In: Embedded Software, pp. 166–184. Springer (2001)

  15. Microchip Technology Inc. Wifly command reference, advanced features and applications user’s guide

  16. Castro-Linares, R., Guadarrama-Olvera, J.R., Rodríguez-Cortés, H.: Robust trajectory tracking control of a quadrotor helicopter. In: Submitted to 2014 European Control Conference, pp. 84–89 (2014)

  17. Rodríguez-Cortés, H., Corona-Sanchez, J.J.: Path following control for the cartesian position of the quadrotor. In: Conferencia Latinoamericana de Control Automático, Lima, Peru (2012)

  18. Lee, D.B., Burg, T.C., Xian, B., Dawson, D.M.: Output feedback tracking control of an underactuated quad-rotor uav. In: American Control Conference, 2007. ACC’07, pp. 1775–1780. IEEE (2007)

  19. Lewis, M.A., Tan, K.-H.: High precision formation control of mobile robots using virtual structures. Auton. Robot. 4(4), 387–403 (1997)

    Article  Google Scholar 

  20. Lin, P., Qin, K., Li, Z., Ren, W.: Collective rotating motions of second-order multi-agent systems in three-dimensional space. Syst. Control Lett. 60(6), 365–372 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, X., Guo, Y., Lu, P.: Robust attitude coordination control for satellite formation with matched perturbations and measurement noises. In: American Control Conference (ACC), 2014, pp. 3893–3898 (2014)

  22. Low, C.B.: A dynamic virtual structure formation control for fixed-wing uavs. In: 9th IEEE International Conference on Control and Automation (ICCA), 2011, pp. 627–632 (2011)

  23. Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear \(\mathcal {H}_{\infty }\) structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ren, W., Beard, R.W.: Consensus algorithms for double-integrator dynamics. Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications, pp. 77–104 (2008)

  25. Roldão, V., Cunha, R., Cabecinhas, D., Silvestre, C., Oliveira, P.: A leader-following trajectory generator with flight, application to quadrotor formation. Robot. Auton. Syst. 62(10), 1597–1609 (2014)

    Article  Google Scholar 

  26. Salazar-Cruz, S., Palomino, A., Lozano, R.: Trajectory tracking for a four rotor mini-aircraft. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05, pp. 2505–2510. IEEE (2005)

  27. Sepulchre, R., Jankovic, M., Kokotovic, P.V.: Constructive Nonlinear Control, 1997. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  28. Shaw, E., Chung, H., Hedrick, J.K., Sastry, S.: Unmanned helicopter formation flight experiment for the study of mesh stability. In: Cooperative Systems, pp. 37–56. Springer (2007)

  29. Ribeiro, T.T., Ferrari, R., Santos, J., Conceicao, A.G.S.: Formation control of mobile robots using decentralized nonlinear model predictive control. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2013, pp. 32–37 (2013)

  30. Turpin, M., Michael, N., Kumar, V.: Trajectory design and control for aggressive formation flight with quadrotors. Auton. Robot. 33(1–2), 143–156 (2012)

    Article  Google Scholar 

  31. Waslander, S.L., Hoffmann, G.M., Jang, J.S., Tomlin, C.J.: Multi-agent quadrotor testbed control design: Integral sliding mode vs. reinforcement learning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005), pp. 3712–3717. IEEE (2005)

  32. Yu, W., Zheng, W.X., Chen, G., Ren, W., Cao, J.: Second-order consensus in multi-agent dynamical systems with sampled position data. Automatica 47(7), 1496–1503 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rodríguez-Cortés.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Jacob, J.A., Corona-Sánchez, J.J. & Rodríguez-Cortés, H. Experimental Implementation of a Leader-Follower Strategy for Quadrotors Using a Distributed Architecture. J Intell Robot Syst 84, 435–452 (2016). https://doi.org/10.1007/s10846-015-0327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0327-7

Keywords

Navigation